Engineered bacteria find tumors, then alert the authorities

Combining discoveries in cancer immunology with sophisticated genetic engineering, Columbia University researchers have created a sort of "bacterial suicide squad" that targets tumors, attracting the host’s own immune cells to the cancer to destroy it. The new work, published today in Science Advances, marks a major step forward in efforts to enlist non-pathogenic bacteria to combat cancer.

Scientists have known for years that some species of bacteria can thrive inside tumors. "It's been speculated that this is due to the low pH, necrotic and immune-excluded environment... that's unique to the core of a tumor and supports bacterial growth while preventing clearance of bacteria by immune cells," says Nicholas Arpaia, PhD, assistant professor of microbiology and immunology at Columbia's Vagelos College of Physicians and Surgeons and senior author on the new paper. In an ongoing collaboration with Tal Danino, PhD, associate professor of biomedical engineering at Columbia Engineering, Dr. Arpaia has been building an anti-tumor strategy around that phenomenon.

At the core of the approach is a probiotic strain of the bacterium E. coli, engineered with a synchronized lysis circuit. Once the bacterial cells reach a quorum inside a tumor, the circuit triggers, causing most of the bacteria to lyse, or break apart, releasing their contents. Previously, the investigators have added genes to the microbes encoding proteins that block tumor cell growth, or that flag the tumor for digestion by immune cells.

"My graduate student, Thomas [Savage], had the idea of potentially utilizing this platform to deliver chemokines," says Dr. Arpaia, who is also a member of the Herbert Irving Comprehensive Cancer Center (HICCC) at NewYork-Presbyterian/Columbia University Irving Medical Center.

Attracting killer T cells

Immunologists have found that different chemokines, immune system signaling proteins, attract different types of immune cells and stimulate them to respond in specific ways. In the new work, the team included a mutated version of a human chemokine gene that attracts "killer" T cells. "Although T cell responses that are specific to tumor-derived antigens are primed, sometimes what will happen is that despite there being primed anti-tumor T cells, they fail to be recruited into the tumor environment," says Dr. Arpaia.

To further augment therapeutic efficacy, the researchers added a second bacterial strain expressing another chemokine, this time to attract dendritic cells. "By coupling this with chemokines that drive the infiltration and activation of dendritic cells, a critical innate immune cell type, detection of tumor antigens is increased," says Dr. Arpaia. Activated dendritic cells eat the tumor cells, then present their antigens to the T cells, which can then recognize the tumor cells better and respond to them more reliably.

The new work involved collaborators from the Department of Pathology and Cell Biology, the HICCC and the Data Science Institute at Columbia, and also built on a long series of previous findings by others. "Through decades of research that's allowed us to understand how an immune response develops, [we’re] developing therapeutics that specifically target each one of those discrete steps," says Dr. Arpaia.

In mouse models of cancer, the engineered bacteria induce robust immune responses against tumors that have been injected directly with the bacteria, as well as more distant tumors that weren't injected. Delivering the bacteria intravenously also works. "What we see is that the bacteria will only colonize the tumor environment, and they only reach a sufficient level of quorum to induce lysis within the tumor, so we can’t detect bacteria in other healthy organs," says Dr. Arpaia.

The scientists continue to tinker with the system to optimize it, while also laying the groundwork to take it into clinical trials. Dr. Arpaia and some of his collaborators have applied for a patent on the approach, and are part of a company, GenCirq, Inc., to develop the therapy further.

Savage TM, Vincent RL, Rae SS, Huang LH, Ahn A, Pu K, Li F, de Los Santos-Alexis K, Coker C, Danino T, Arpaia N.
Chemokines expressed by engineered bacteria recruit and orchestrate antitumor immunity.
Sci Adv. 2023 Mar 10;9(10):eadc9436. doi: 10.1126/sciadv.adc9436

Most Popular Now

Engineered bacteria find tumors, then alert the au…

Combining discoveries in cancer immunology with sophisticated genetic engineering, Columbia University researchers have created a sort of "bacterial suicide squad" that ...

Scientists reveal a potential new approach to trea…

Scientists at the National Institutes of Health and Massachusetts General Hospital in Boston have uncovered a potential new approach against liver cancer that could lead ...

Pfizer invests $43 billion to battle cancer

Pfizer Inc. (NYSE: PFE) and Seagen Inc. (Nasdaq: SGEN) today announced that they have entered into a definitive merger agreement under which Pfizer will acquire Seagen, a...

First nasal monoclonal antibody treatment for COVI…

A pilot trial by investigators from Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, tested the nasal administration of the ...

AstraZeneca launches call for entries to the 2023 …

AstraZeneca has announced the launch of the 2023 R&D Postdoctoral Challenge, an initiative designed to accelerate ideas to transform the treatment of some of the world’s ...

US FDA Advisory Committee votes to support effecti…

GSK plc (LSE/NYSE: GSK) announced that the US Food and Drug Administration (FDA) Vaccines and Related Biological Products Advisory Committee (VRBPAC) voted that the avail...

Tumour cells' response to chemotherapy is driven b…

Cancer cells have an innate randomness in their ability to respond to chemotherapy, which is another tool in their arsenal of resisting treatment, new research led by the...

Pfizer's ZAVZPRET™ (zavegepant) migraine nasal spr…

Pfizer Inc. (NYSE: PFE) today announced the U.S. Food and Drug Administration (FDA) has approved ZAVZPRET™ (zavegepant), the first and only calcitonin gene-related peptid...

Normalizing tumor blood vessels may improve immuno…

A type of immune therapy called chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of multiple types of blood cancers but has shown limited e...

Gene and cell therapies to combat pancreatic cance…

Pancreatic cancer is an incurable form of cancer, and gene therapies are currently in clinical testing to treat this deadly disease. A comprehensive review of the gene an...

DNA treatment could delay paralysis that strikes n…

In virtually all persons with amyotrophic lateral sclerosis (ALS) and in up to half of all cases of Alzheimer's disease (AD) and frontotemporal dementia, a protein called...

Novartis Tafinlar + Mekinist approved by FDA for p…

Novartis today announced the U.S. Food and Drug Administration (FDA) granted approval for Tafinlar® (dabrafenib) + Mekinist® (trametinib) for the treatment of pediatric p...