AI conjures proteins that speed up chemical reactions

For the first time, scientists have used machine learning to create brand-new enzymes, which are proteins that accelerate chemical reactions. This is an important step in the field of protein design as new enzymes could have many uses across medicine and industrial manufacturing.

"Living organisms are remarkable chemists. Rather than relying on toxic compounds or extreme heat, they use enzymes to break down or build up whatever they need under gentle conditions. New enzymes could put renewable chemicals and biofuels within reach," said senior author David Baker, professor of biochemistry at the University of Washington School of Medicine and recipient of the 2021 Breakthrough Prize in Life Sciences.

As reported Feb, 22 in the journal Nature, a team based at the Institute for Protein Design at UW Medicine devised machine-learning algorithms that can create light-emitting enzymes called luciferases. Laboratory testing confirmed that the new enzymes can recognize specific chemicals and emit light very efficiently. This project was led by two postdoctoral scholars in the Baker Lab, Andy Hsien-Wei Yeh and Christoffer Norn.

To create new luciferase enzymes, the team first selected chemicals called luciferins that they wanted the proteins to act upon. They then used software to generate thousands of possible protein structures that might react with those chemicals.

During laboratory testing, the researchers identified an efficient enzyme, dubbed LuxSit (Let there be light). The enzyme performed the desired chemical reaction. Refinement of the enzyme led to dramatic improvements in performance. An optimized enzyme, dubbed LuxSit-i, generated enough light to be visible to the naked eye. It was found to be brighter than the natural luciferase enzyme found in the glowing sea pansy Renilla reniformis.

"We were able to design very efficient enzymes from scratch on the computer, as opposed to relying on enzymes found in nature. This breakthrough means that custom enzymes for almost any chemical reaction could, in principle, be designed," said Yeh.

New enzymes could benefit biotechnology, medicine, environmental remediation, and manufacturing. For example, in biotechnology, enzymes can improve biofuel production, food processing, and pharmaceutical manufacturing. In medicine, enzymes can serve as therapeutic and diagnostic tools. Enzyme design can improve the environment by breaking down pollutants or cleaning up contaminated sites. And enzymes may also aid in the production of new materials such as biodegradable plastics and adhesives.

This research was led by UW School of Medicine scientists and included collaborators at the University of California, Los Angeles.

This work was supported by the Howard Hughes Medical Institute, National Institutes of Health (K99EB031913), United World Antiviral Research Network, National Institute of Allergy and Infectious Disease (1 U01 AI151698-01), Audacious Project at the Institute for Protein Design, Open Philanthropy Project Improving Protein Design Fund, Novo Nordisk Foundation (NNF18OC0030446), National Science Foundation (CHE-1764328, OCI-1053575), and Eric and Wendy Schmidt by recommendation of the Schmidt Futures program. National Natural Science Foundation of China (22103060) provided partial computational resources.

Yeh AH, Norn C, Kipnis Y, Tischer D, Pellock SJ, Evans D, Ma P, Lee GR, Zhang JZ, Anishchenko I, Coventry B, Cao L, Dauparas J, Halabiya S, DeWitt M, Carter L, Houk KN, Baker D.
De novo design of luciferases using deep learning.
Nature. 2023 Feb;614(7949):774-780. doi: 10.1038/s41586-023-05696-3

Most Popular Now

Engineered bacteria find tumors, then alert the au…

Combining discoveries in cancer immunology with sophisticated genetic engineering, Columbia University researchers have created a sort of "bacterial suicide squad" that ...

Scientists reveal a potential new approach to trea…

Scientists at the National Institutes of Health and Massachusetts General Hospital in Boston have uncovered a potential new approach against liver cancer that could lead ...

Pfizer invests $43 billion to battle cancer

Pfizer Inc. (NYSE: PFE) and Seagen Inc. (Nasdaq: SGEN) today announced that they have entered into a definitive merger agreement under which Pfizer will acquire Seagen, a...

First nasal monoclonal antibody treatment for COVI…

A pilot trial by investigators from Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, tested the nasal administration of the ...

AstraZeneca launches call for entries to the 2023 …

AstraZeneca has announced the launch of the 2023 R&D Postdoctoral Challenge, an initiative designed to accelerate ideas to transform the treatment of some of the world’s ...

US FDA Advisory Committee votes to support effecti…

GSK plc (LSE/NYSE: GSK) announced that the US Food and Drug Administration (FDA) Vaccines and Related Biological Products Advisory Committee (VRBPAC) voted that the avail...

Tumour cells' response to chemotherapy is driven b…

Cancer cells have an innate randomness in their ability to respond to chemotherapy, which is another tool in their arsenal of resisting treatment, new research led by the...

Pfizer's ZAVZPRET™ (zavegepant) migraine nasal spr…

Pfizer Inc. (NYSE: PFE) today announced the U.S. Food and Drug Administration (FDA) has approved ZAVZPRET™ (zavegepant), the first and only calcitonin gene-related peptid...

Normalizing tumor blood vessels may improve immuno…

A type of immune therapy called chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of multiple types of blood cancers but has shown limited e...

Gene and cell therapies to combat pancreatic cance…

Pancreatic cancer is an incurable form of cancer, and gene therapies are currently in clinical testing to treat this deadly disease. A comprehensive review of the gene an...

DNA treatment could delay paralysis that strikes n…

In virtually all persons with amyotrophic lateral sclerosis (ALS) and in up to half of all cases of Alzheimer's disease (AD) and frontotemporal dementia, a protein called...

Novartis Tafinlar + Mekinist approved by FDA for p…

Novartis today announced the U.S. Food and Drug Administration (FDA) granted approval for Tafinlar® (dabrafenib) + Mekinist® (trametinib) for the treatment of pediatric p...