Cryptic drug-binding sites discovered in the dance

Some of the toughest challenges in treating disease are presented by “undruggable” proteins whose structures and roles in disease are known but are seemingly unable to be targeted by drugs that will bind to them. Researchers at King Abdullah University of Science and Technology (KAUST) have now shown that the molecular motion of many "undruggable" proteins can in fact expose sites at which drugs could bind.

The research is focused on a particular molecular region, called the BTB domain, that is known to be a critical part of more than 350 proteins. It allows proteins to bind to other proteins to influence complex genetic and molecular signaling processes central to the activities of many cells.

More than 80 known BTB-containing proteins are transcription factors that control the activities of genes, a role that means many of them are implicated in cancer. As the BTB domain has proved difficult to target with drugs, these cancers are often fatal.

The team at KAUST, together with colleagues at the University of Michigan in the U.S., conducted a detailed analysis of the molecular motions of BTB domains in three proteins involved in cancer.

The results uncovered the role of molecular motion in influencing the ability of small molecules, collectively known as ligands, to bind to the BTB domain. This revealed cryptic binding sites - dynamic regions of BTB domains that appear available to bind to ligands, unlike the static structures.

"This means that some seemingly undruggable target proteins can now be reconsidered, with the firm hope of identifying novel lead compounds for anticancer drug development," says Łukasz Jaremko of the KAUST team. "The hero of our study, called the MIZ1 protein, is linked to c-MYC, the oncogene cancer-causing gene of over 70 percent of cancers, and can now be targeted for drug discovery campaigns."

The researchers were surprised to discover how important the movement of proteins could be in controlling ligand binding sites, while acknowledging it seems logical in retrospect.

First author Vladlena Kharchenko, a former KAUST Ph.D. student and now a postdoctoral fellow at Albert Einstein College of Medicine in the U.S., says the next challenge is to fully understand the mechanisms that allow molecular movements to make cryptic binding sites so hard to detect and interact with.

"We also want to find these sites in other proteins, to advance the drug discovery process for many other currently undruggable proteins and ultimately give new hope for treating currently incurable diseases, including many forms of cancer," Kharchenko concludes.

Kharchenko V, Linhares BM, Borregard M, Czaban I, Grembecka J, Jaremko M, Cierpicki T, Jaremko Ł.
Increased slow dynamics defines ligandability of BTB domains.
Nat Commun. 2022 Nov 16;13(1):6989. doi: 10.1038/s41467-022-34599-6

Most Popular Now

Bayer to accelerate drug discovery with Google Clo…

Bayer AG and Google Cloud announced a collaboration to drive early drug discovery that will apply Google Cloud's Tensor Processing Units (TPUs), which are custom-develope...

NextPoint Therapeutics announces $80 million Serie…

NextPoint Therapeutics, a biotechnology company developing a new world of precision immuno-oncology, announced today that it raised $80 million in Series B financing co-l...

AstraZeneca to acquire CinCor Pharma to strengthen…

AstraZeneca has entered into a definitive agreement to acquire CinCor Pharma, Inc. (CinCor), a US-based clinical-stage biopharmaceutical company, focused on developing no...

Acquisition of Neogene Therapeutics completed

AstraZeneca has completed the acquisition of Neogene Therapeutics Inc. (Neogene), a global clinical-stage biotechnology company pioneering the discovery, development and ...

Pfizer expands 'An Accord for a Healthier World' p…

Pfizer Inc. (NYSE: PFE) announced that it has significantly expanded its commitment to An Accord for a Healthier World to offer the full portfolio of medicines and vaccin...

500,000 missed out on blood pressure lowering drug…

Nearly half a million people missed out on starting medication to lower their blood pressure during the COVID-19 pandemic, according to research supported by the British ...

Study identifies potential new approach for treati…

Targeting iron metabolism in immune system cells may offer a new approach for treating systemic lupus erythematosus (SLE) - the most common form of the chronic autoimmune...

Nanotechnology may improve gene therapy for blindn…

Using nanotechnology that enabled mRNA-based COVID-19 vaccines, a new approach to gene therapy may improve how physicians treat inherited forms of blindness. A collabo...

Roche announces the European Commission approval o…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced that the European Commission (EC) has approved Xofluza® (baloxavir marboxil) in children aged one year and above for the trea...

Modified CRISPR-based enzymes improve the prospect…

Many genetic diseases are caused by diverse mutations spread across an entire gene, and designing genome editing approaches for each patient’s mutation would be impractic...

A soybean protein blocks LDL cholesterol productio…

A protein in soybeans blocks the production of a liver enzyme involved in the metabolism of triglycerides and low-density lipoprotein, scientists found in a recent study...

Discovery of anti-cancer chemistry makes skullcap …

The evolutionary secrets that enable the medicinal herb known as barbed skullcap to produce cancer fighting compounds have been unlocked by a collaboration of UK and Chin...