Vitamin K prevents cell death: a new function for a long-known molecule

Vitamin K is well-known for its blood clotting and bone building properties but today a new study published in Nature reports on a novel function for vitamin K.

The researchers discovered that the fully reduced form of vitamin K acts as an antioxidant efficiently inhibiting ferroptotic cell death. Ferroptosis is a natural form of cell death in which cellular iron plays an important role and which is characterized by the oxidative destruction of cellular membranes. In addition, the team identified FSP1 as the warfarin-insensitive enzyme reducing vitamin K, the identity of which had been postulated but remained unknown for more than half a century. During the last years, ferroptosis has been implicated as a driver of Alzheimer’s disease and acute organ injuries among many other diseases. Thus, the present findings put forward the concept that vitamin K treatment might be a new powerful strategy to ameliorate these ferroptosis-related diseases.

Vitamin K is a potent ferroptosis suppressor

Since ferroptosis prevention is considered a highly promising approach for the therapy of many degenerative diseases, new mechanisms and compounds regulating ferroptosis are extensively being explored. To identify these new molecules, a team of researchers led by Dr. Eikan Mishima and Dr. Marcus Conrad, both from the Institute of Metabolism and Cell Death at Helmholtz Munich, along with collaborators from Tohoku University (Japan), University of Ottawa (Canada) and Technical University of Dresden (Germany), systematically studied a number of naturally occurring vitamins, as well as their derivatives. "Surprisingly, we identified that vitamin K, including phylloquinone (vitamin K1) and menaquinone-4 (vitamin K2), is able to efficiently rescue cells and tissues from undergoing ferroptosis" Dr. Eikan Mishima, first author of the study explained.

Unraveling the long sought-after vitamin K reducing enzyme FSP1

In 2019 a team of researchers around Dr. Marcus Conrad already identified an enzyme as a novel and strong inhibitor of ferroptosis: ferroptosis suppressor protein-1, short FSP1. At the time, the team showed that FSP1 reduced coenzyme Q10 to its hydroquinone, which suppressed ferroptosis. The research team now found that the fully reduced form of vitamin K (i.e., vitamin K hydroquinone) is, like the reduced form of coenzyme Q10, a strong lipophilic antioxidant and prevents ferroptosis by trapping oxygen radicals in lipid bilayers.

"The reduced forms of Vitamin K and coenzyme Q10 are not very stable, so our finding that FSP1 can maintain them in their active (reduced) state is key to understanding how they are able to function to maintain cell viability." explained Derek A. Pratt, co-author and University Research Chair in Free Radical Chemistry at the University of Ottawa. In addition, they identified that FSP1 is the enzyme that efficiently reduces vitamin K to vitamin K hydroquinone, thereby driving a novel non-canonical vitamin K cycle. Since vitamin K is critically involved in blood clotting processes, the team further showed that FSP1 is responsible for the vitamin K-reduction pathway insensitive against warfarin, one of the most commonly prescribed anticoagulants.

Breakthrough in understanding vitamin K metabolism

Unraveling the identity of this enzyme solved the last riddle of vitamin K metabolism in blood clotting and elucidated the molecular mechanism of why vitamin K constitutes the antidote for overdosing of warfarin. "Our results therefore link the two worlds of ferroptosis research and vitamin K biology. They will serve as the stepping stone for the development of novel therapeutic strategies for diseases where ferroptosis has been implicated," Dr. Marcus Conrad highlighted. In addition, since ferroptosis most likely constitutes one of the oldest types of cell death, the researchers hypothesize that vitamin K might be one of the most ancient types of naturally occurring antioxidants. "Thus, new aspects of the role of vitamin K throughout the evolution of life are expected to be unveiled," Dr. Marcus Conrad explained.

Mishima E, Ito J, Wu Z et al.
A non-canonical vitamin K cycle is a potent ferroptosis suppressor.
Nature, 2022. 10.1038/s41586-022-05022-3

Most Popular Now

FDA grants Breakthrough Therapy Designation to Pfi…

Pfizer Inc. (NYSE:PFE) today announced that its investigational Group B Streptococcus (GBS) vaccine candidate, GBS6 or PF-06760805, received Breakthrough Therapy Designat...

Novartis invests in early technical development ca…

Novartis today announced it is investing in next-generation biotherapeutics with the creation of a fully integrated, dedicated USD 300m scientific environment that will b...

Malaria booster vaccine shows durable high efficac…

Researchers from the University of Oxford and their partners have today reported new findings from their Phase 2b trial following the administration of a booster dose of ...

Research reveals widespread use of ineffective COV…

Monoclonal antibodies are laboratory-designed treatments tailor-made to fight specific infections. In early 2021, the U.S. Food & Drug Administration issued emergency use...

Strict COVID lockdowns in France improved cardiova…

A new paper in European Heart Journal - Digital Health, published by Oxford University Press, indicates that social-distancing measures like total lockdown have a measura...

Pfizer and BioNTech receive positive CHMP opinion …

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced a 30-µg booster dose of their Omicron BA.4/BA.5 bivalent-adapted COVID-19 vaccine (COMIRNATY® Original/Om...

U.S. clinical trial evaluating antiviral for monke…

A Phase 3 clinical trial evaluating the antiviral tecovirimat, also known as TPOXX, is now enrolling adults and children with monkeypox infection in the United States. St...

Stem cell-gene therapy shows promise in ALS safety…

Cedars-Sinai investigators have developed an investigational therapy using support cells and a protective protein that can be delivered past the blood-brain barrier. This...

Drug turns cancer gene into "eat me" fla…

Tumor cells are notoriously good at evading the human immune system; they put up physical walls, wear disguises and handcuff the immune system with molecular tricks. Now...

Mucosal antibodies in the airways protect against …

High levels of mucosal antibodies in the airways reduce the risk of being infected by omicron, but many do not receive detectable antibodies in the airways despite three ...

WHO strongly advises against antibody treatments f…

The antibody drugs sotrovimab and casirivimab-imdevimab are not recommended for patients with COVID-19, says a WHO Guideline Development Group of international experts in...

WHO grants prequalification to GSK's Mosquirix - t…

GSK plc (LSE/NYSE: GSK) announced that the World Health Organization (WHO) has awarded prequalification to Mosquirix (also known as RTS,S/AS01), GSK's groundbreaking mala...