Scientists develop new biomimetic formulation for treating glioblastoma

Glioblastoma multiforme (GBM) is an aggressive brain cancer with a poor prognosis and few treatment options. New and effective approaches for GBM treatment are therefore urgently needed.

Based on observation of elevated lactate in resected GBM, researchers from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences and Shenzhen Second People's Hospital have developed a biomimetic formulation using targeted delivery agents for lactate metabolism-based synergistic therapy against GBM.

The study was published in Nature Communications on July 21.

Targeting lactate metabolism is an attractive tumor therapeutic strategy. However, there are no reports that directly harness lactate metabolism for GBM treatments. One limitation is the existence of the blood-brain barrier, which prevents most drug molecules (including those interfering with lactate metabolism) from reaching the brain.

Moreover, considering the complexity and infiltrating characteristics of GBM, lactate metabolic monotherapy is very unlikely to effectively eliminate GBM cells. Therefore, it is vital to develop synergistic strategies to enhance the therapeutic efficiency of lactate metabolic therapy.

In this study, the researchers collected glioma samples from a large cohort of patients and quantified the lactate metabolic indicators LDHA and MCT4 and a representative proliferation marker Ki67.

"We observed a positive correlation between lactate metabolic indicators and the extent of glioma proliferation," said Prof. LI Weiping from Shenzhen Second People's Hospital. Thus, an efficient metabolism-based synergistic therapy was proposed that would directly harness the elevated lactate in GBM.

The researchers fabricated self-assembly nanoparticles (NPs) composed of hemoglobin (Hb), lactate oxidase (LOX), bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl] oxalate (CPPO), and chlorin e6 (Ce6) using a one-pot approach. They subsequently encapsulated these self-assembled NPs with membrane materials prepared from U251 glioma cells to generate the biomimetic M@HLPC system. This design concept was able to achieve targeted delivery for combination therapy.

"After intravenous injection, the M@HLPC could cross the blood brain barrier via transcytosis sourced from integrin and vascular cell-adhesion-protein-mediated recognition, and then accumulated in GBM through homotypic recognition based on cell-recognition-function-associated proteins," said Prof. WEI Wei from IPE.

In tumors, LOX in the NPs converted lactate into pyruvic acid and hydrogen peroxide (H2O2). The pyruvic acid inhibited cancer cell growth by blocking histone expression and inducing cell-cycle arrest. In parallel, the H2O2 acted as a local fuel to react with the delivered CPPO to release energy, which could then be used by the co-delivered photosensitizer Ce6 for the generation of cytotoxic singlet oxygen to kill glioma cells.

Potent therapeutic efficacy was confirmed in both cell-line-derived xenograft and patient-derived xenograft (PDX) tumor models.

"Considering the safety of the formulation and the potent therapeutic effects against the matched PDX model, our personalized biomimetic formulation has the potential to translate to clinical application," said Prof. MA Guanghui from IPE.

A peer reviewer from Nature Communications said, "The idea of this work is interesting." Another reviewer emphasized that "a multi-targeting, personalized, smart nanoplatform to tackle glioblastoma multiforme is presented. Rationale is well explained, I indeed appreciate the multi-strategies approach and the biomolecular characterization."

Lu G, Wang X, Li F, Wang S, Zhao J, Wang J, Liu J, Lyu C, Ye P, Tan H, Li W, Ma G, Wei W.
Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma.
Nat Commun. 2022 Jul 21;13(1):4214. doi: 10.1038/s41467-022-31799-y

Most Popular Now

Lilly will supply an additional 150,000 doses of b…

Eli Lilly and Company (NYSE: LLY) announced a modified purchase agreement with the U.S. government to supply an additional 150,000 doses of bebtelovimab for approximately...

Bayer to sell men's health product Nebido™ to Grün…

Bayer and Grünenthal have entered into a definitive agreement regarding the sale of Bayer's men's health product Nebido™ (testosterone undecanoate), for a purchase price ...

Pfizer and BioNTech complete submission to Europea…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced they have completed a submission to the European Medicines Agency (EMA) for an Omicron-adapted biva...

The fourth COVID-19 vaccine reduces the risk of de…

A new study by Tel Aviv University and Ben Gurion University of the Negev, in collaboration with the Israeli Ministry of Health, has found that the fourth COVID-19 vaccin...

Vaccine protection against COVID-19 short-lived, b…

Since COVID-19 vaccines first became available to protect against infection and severe illness, there has been much uncertainty about how long the protection lasts, and w...

AstraZeneca to acquire TeneoTwo and its clinical-s…

AstraZeneca announced an agreement to acquire TeneoTwo, Inc. (TeneoTwo)i, including its Phase I clinical-stage CD19/CD3 T-cell engager, TNB-486, currently under evaluatio...

Demonstration of a potent, universal coronavirus m…

The SARS-CoV-2 that causes COVID-19 has killed 6.3 million people worldwide since 2019, painfully highlighting the vulnerability of humanity to novel coronaviruses. Re...

Research shows investigational drug fosters nerve …

Scientists from the University of Birmingham have shown that a brain-penetrating candidate drug currently in development as a cancer therapy can foster regeneration of da...

NIH launches clinical trial of mRNA Nipah virus va…

The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has launched an early-stage clinical trial evaluating an inv...

Anti-inflammatory compound shows potential in trea…

An anti-inflammatory compound may have the potential to treat systemic inflammation and brain injury in patients with severe COVID-19 and significantly reduce their chanc...

Vaccine-induced immune response to omicron wanes s…

Although COVID-19 booster vaccinations in adults elicit high levels of neutralizing antibodies against the Omicron variant of SARS-CoV-2, antibody levels decrease substan...

SARS-CoV-2 hijacks nanotubes between neurons to in…

COVID-19 often leads to neurological symptoms, such as a loss of taste or smell, or cognitive impairments (including memory loss and concentration difficulties), both dur...