SARS-CoV-2 hijacks nanotubes between neurons to infect them

COVID-19 often leads to neurological symptoms, such as a loss of taste or smell, or cognitive impairments (including memory loss and concentration difficulties), both during the acute phase of the disease and over the long term with "long COVID" syndrome. But the way in which the infection reaches the brain was previously unknown. Scientists from Institut Pasteur and CNRS laboratories have used state-of-the-art electron microscopy approaches to demonstrate that SARS-CoV-2 hijacks nanotubes, tiny bridges that link infected cells with neurons. The virus is therefore able to penetrate neurons despite the fact that they are lacking the ACE2 receptor that the virus usually binds to when infecting cells. The study was published in Science Advances on July 20.

How does SARS-CoV-2 enter brain cells? A study published recently in Science Advances shows that the virus uses nanotubes that form between infected cells and neurons to gain access to neurons. These transient dynamic structures are a result of membrane fusion in distant cells. They enable the exchange of cellular material without the need for membrane receptors, the normal means of entering and exiting the cytoplasm. The Membrane Traffic and Pathogenesis Unit, led by Chiara Zurzolo at the Institut Pasteur, has already found that nanotubes play a role in degenerative diseases such as Alzheimer's and Parkinson's by facilitating the transport of proteins responsible for these diseases.

Infecting neurons in the absence of a receptor

Although the human cell receptor ACE2 serves as a gateway for SARS-CoV-2 to enter lung cells - the main target of the virus - and cells in the olfactory epithelium, it is not expressed by neurons. But viral genetic material has been found in the brains of some patients, which explains the neurological symptoms that characterize acute or long COVID. The olfactory mucosa has previously been suggested as a route to the central nervous system, but that does not explain how the virus is able to enter neuronal cells themselves.

According to this new study, SARS-CoV-2 is also thought to be capable of inducing the formation of nanotubes between infected cells and neurons, as well as among neurons, which would explain how the brain is infected from the epithelium. The research team revealed multiple viral particles located both inside and on the surface of nanotubes. Since the virus spreads more rapidly and directly from within nanotubes than by exiting one cell to move to the next via a receptor, this mode of transmission therefore contributes to the infectious capacity of SARS-CoV-2 and its spread to neuronal cells.

But the virus also moves on the external surface of nanotubes, where it can be guided more quickly to cells that express compatible receptors. "Nanotubes can be seen as tunnels with a road on top," suggests Chiara Zurzolo, Head of the Institut Pasteur's Membrane Traffic and Pathogenesis Unit, "which enable the infection of nonpermissive cells like neurons but also facilitate the spread of infection between permissive cells."

State-of-the-art imaging methods with the Titan Krios microscope

This publication combines research on in vitro cultures, showing that healthy neuronal cells are infected if they come into contact with infected cells, with the use of state-of-the-art microscopy tools. The Titan Krios microscope in the Institut Pasteur's NanoImaging Core Facility offers unprecedented resolution of biological samples and nanomolecules that is closer to real biological conditions. "With this instrument, novel imaging approaches have been developed to evaluate the structure of SARS-CoV-2 and the architecture of nanotubes," explains Anna Pepe from the Institut Pasteur's Membrane Traffic and Pathogenesis Unit, first author of the study.

Working in cooperation with the Institut Pasteur's Ultrastructural BioImaging Core Facility, the research teams used precise investigative methods to detect structures in the nanotubes that were subsequently identified as "virus factories." The nanotubes between neurons represent a propitious environment for SARS-CoV-2 to develop, since it is invisible to the immune system. Chiara Zurzolo believes that "it may represent a mechanism for immune evasion and viral persistence that could be favorable to the virus."

This study is an example of how basic interdisciplinary research, involving cellular biologists, virologists and state-of-the-art imaging techniques, can lead to new discoveries. It paves the way for further research on the role of cell-to-cell communication in the spread of SARS-CoV-2. It also encourages exploration of alternative therapeutic approaches to hinder the spread of SARS-CoV-2, alongside current projects that are mainly focused on blocking entry via the ACE2 receptor.

Pepe A, Pietropaoli S, Vos M, Barba-Spaeth G, Zurzolo C.
Tunneling nanotubes provide a route for SARS-CoV-2 spreading.
Sci Adv. 2022 Jul 22;8(29):eabo0171. doi: 10.1126/sciadv.abo0171

Most Popular Now

AstraZeneca enters license agreement with KYM Bios…

AstraZeneca and KYM Biosciences Inc.* have entered into a global exclusive licence agreement for CMG901, a potential first-in-class antibody drug conjugate (ADC) targetin...

Pfizer's elranatamab receives FDA and EMA filing a…

Pfizer Inc. (NYSE:PFE) announced today that the U.S. Food and Drug Administration (FDA) has granted Priority Review for the company's Biologics License Application (BLA) ...

Pfizer receives positive FDA Advisory Committee vo…

Pfizer Inc. (NYSE: PFE) announced that the U.S. Food and Drug Administration's (FDA) Vaccines and Related Biological Products Advisory Committee (VRBPAC) voted that avail...

US FDA Advisory Committee votes to support effecti…

GSK plc (LSE/NYSE: GSK) announced that the US Food and Drug Administration (FDA) Vaccines and Related Biological Products Advisory Committee (VRBPAC) voted that the avail...

First nasal monoclonal antibody treatment for COVI…

A pilot trial by investigators from Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, tested the nasal administration of the ...

"Semantic similarity" leads to novel dru…

The words that researchers use to describe their results can be harnessed to discover potential new treatments for Parkinson's disease, according to a new study published...

Tumour cells' response to chemotherapy is driven b…

Cancer cells have an innate randomness in their ability to respond to chemotherapy, which is another tool in their arsenal of resisting treatment, new research led by the...

Nanosatellite shows the way to RNA medicine of the…

The RNA molecule is commonly recognized as messenger between DNA and protein, but it can also be folded into intricate molecular machines. An example of a naturally occur...

Gene and cell therapies to combat pancreatic cance…

Pancreatic cancer is an incurable form of cancer, and gene therapies are currently in clinical testing to treat this deadly disease. A comprehensive review of the gene an...

Engineered bacteria find tumors, then alert the au…

Combining discoveries in cancer immunology with sophisticated genetic engineering, Columbia University researchers have created a sort of "bacterial suicide squad" that ...

Digital twin opens way to effective treatment of i…

Inflammatory diseases like rheumatoid arthritis have complex disease mechanisms that can differ from patient to patient with the same diagnosis. This means that currently...

AI conjures proteins that speed up chemical reacti…

For the first time, scientists have used machine learning to create brand-new enzymes, which are proteins that accelerate chemical reactions. This is an important step in...