Vaccine protection against COVID-19 short-lived, booster shots important

Since COVID-19 vaccines first became available to protect against infection and severe illness, there has been much uncertainty about how long the protection lasts, and when it might be necessary for individuals to get an additional booster shot.

Now, a team of scientists led by faculty at the Yale School of Public Health and the University of North Carolina at Charlotte has an answer: strong protection following vaccination is short-lived.

The study is the first to quantify the likelihood of future infection following natural infection or vaccination by the Moderna, Pfizer, Johnson & Johnson, or Oxford-AstraZeneca vaccines. The findings are published in the Proceedings of the National Academy of Sciences.

The risk of breakthrough infections, in which a person becomes infected despite being vaccinated, depends on the vaccine type. According to the study, current mRNA vaccines (Pfizer, Moderna) offer the greatest duration of protection, nearly three times as long as that of natural infection and the Johnson & Johnson and Oxford-AstraZeneca vaccines.

"The mRNA vaccines produce the highest levels of antibody response and in our analysis confer more durable protection than other vaccines or exposures," said Jeffrey Townsend, the Elihu Professor of Biostatistics at Yale School of Public Health and the study's lead author. "However, it is important to remember that natural immunity and vaccination are not mutually exclusive. Many people will have partial immunity from multiple sources, so understanding the relative durability is key to deciding when to provide a boost to your immune system."

Dependable protection against reinfection requires up-to-date boosting with vaccines that are adapted to address changes in the virus that occur as part of its natural evolution over time, the researchers said.

"We tend to forget that we are in an arms race with this virus, and that it will evolve ways to evade both our natural and any vaccine-derived immune response," said Alex Dornburg, assistant professor at the University of North Carolina at Charlotte, who led the study with Townsend. "As we have seen with the Omicron variant, vaccines against early virus strains become less effective at combating new strains of the virus."

The researchers’ data-driven model of infection risks through time takes advantage of the striking similarities of reinfection probabilities between endemic coronaviruses (which cause "common colds") and SARS-CoV-2, the virus that causes COVID-19. These similarities allowed the scientists to make longer-term projections than studies focused solely on current-day infections. Furthermore, the model placed antibody responses following natural and vaccine-mediated immunity into the same context, enabling comparison.

"SARS-CoV-2 mirrors other endemic coronaviruses that also evolve and reinfect us despite natural immunity to earlier strains," said Townsend. "Continual updating of our vaccinations and booster shots is critical to our fight against SARS-CoV-2."

Funding for the research was provided by the National Science Foundation.

Jeffrey P Townsend, Hayley B Hassler, Pratha Sah, Alison P Galvani, Alex Dornburg.
The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2.
PNAS, 2022. doi: 10.1073/pnas.2204336119

Most Popular Now

Lilly will supply an additional 150,000 doses of b…

Eli Lilly and Company (NYSE: LLY) announced a modified purchase agreement with the U.S. government to supply an additional 150,000 doses of bebtelovimab for approximately...

Bayer to sell men's health product Nebido™ to Grün…

Bayer and Grünenthal have entered into a definitive agreement regarding the sale of Bayer's men's health product Nebido™ (testosterone undecanoate), for a purchase price ...

Pfizer and BioNTech complete submission to Europea…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced they have completed a submission to the European Medicines Agency (EMA) for an Omicron-adapted biva...

The fourth COVID-19 vaccine reduces the risk of de…

A new study by Tel Aviv University and Ben Gurion University of the Negev, in collaboration with the Israeli Ministry of Health, has found that the fourth COVID-19 vaccin...

Vaccine protection against COVID-19 short-lived, b…

Since COVID-19 vaccines first became available to protect against infection and severe illness, there has been much uncertainty about how long the protection lasts, and w...

AstraZeneca to acquire TeneoTwo and its clinical-s…

AstraZeneca announced an agreement to acquire TeneoTwo, Inc. (TeneoTwo)i, including its Phase I clinical-stage CD19/CD3 T-cell engager, TNB-486, currently under evaluatio...

Demonstration of a potent, universal coronavirus m…

The SARS-CoV-2 that causes COVID-19 has killed 6.3 million people worldwide since 2019, painfully highlighting the vulnerability of humanity to novel coronaviruses. Re...

Research shows investigational drug fosters nerve …

Scientists from the University of Birmingham have shown that a brain-penetrating candidate drug currently in development as a cancer therapy can foster regeneration of da...

NIH launches clinical trial of mRNA Nipah virus va…

The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has launched an early-stage clinical trial evaluating an inv...

Anti-inflammatory compound shows potential in trea…

An anti-inflammatory compound may have the potential to treat systemic inflammation and brain injury in patients with severe COVID-19 and significantly reduce their chanc...

Vaccine-induced immune response to omicron wanes s…

Although COVID-19 booster vaccinations in adults elicit high levels of neutralizing antibodies against the Omicron variant of SARS-CoV-2, antibody levels decrease substan...

SARS-CoV-2 hijacks nanotubes between neurons to in…

COVID-19 often leads to neurological symptoms, such as a loss of taste or smell, or cognitive impairments (including memory loss and concentration difficulties), both dur...