Vaccine protection against COVID-19 short-lived, booster shots important

Since COVID-19 vaccines first became available to protect against infection and severe illness, there has been much uncertainty about how long the protection lasts, and when it might be necessary for individuals to get an additional booster shot.

Now, a team of scientists led by faculty at the Yale School of Public Health and the University of North Carolina at Charlotte has an answer: strong protection following vaccination is short-lived.

The study is the first to quantify the likelihood of future infection following natural infection or vaccination by the Moderna, Pfizer, Johnson & Johnson, or Oxford-AstraZeneca vaccines. The findings are published in the Proceedings of the National Academy of Sciences.

The risk of breakthrough infections, in which a person becomes infected despite being vaccinated, depends on the vaccine type. According to the study, current mRNA vaccines (Pfizer, Moderna) offer the greatest duration of protection, nearly three times as long as that of natural infection and the Johnson & Johnson and Oxford-AstraZeneca vaccines.

"The mRNA vaccines produce the highest levels of antibody response and in our analysis confer more durable protection than other vaccines or exposures," said Jeffrey Townsend, the Elihu Professor of Biostatistics at Yale School of Public Health and the study's lead author. "However, it is important to remember that natural immunity and vaccination are not mutually exclusive. Many people will have partial immunity from multiple sources, so understanding the relative durability is key to deciding when to provide a boost to your immune system."

Dependable protection against reinfection requires up-to-date boosting with vaccines that are adapted to address changes in the virus that occur as part of its natural evolution over time, the researchers said.

"We tend to forget that we are in an arms race with this virus, and that it will evolve ways to evade both our natural and any vaccine-derived immune response," said Alex Dornburg, assistant professor at the University of North Carolina at Charlotte, who led the study with Townsend. "As we have seen with the Omicron variant, vaccines against early virus strains become less effective at combating new strains of the virus."

The researchers’ data-driven model of infection risks through time takes advantage of the striking similarities of reinfection probabilities between endemic coronaviruses (which cause "common colds") and SARS-CoV-2, the virus that causes COVID-19. These similarities allowed the scientists to make longer-term projections than studies focused solely on current-day infections. Furthermore, the model placed antibody responses following natural and vaccine-mediated immunity into the same context, enabling comparison.

"SARS-CoV-2 mirrors other endemic coronaviruses that also evolve and reinfect us despite natural immunity to earlier strains," said Townsend. "Continual updating of our vaccinations and booster shots is critical to our fight against SARS-CoV-2."

Funding for the research was provided by the National Science Foundation.

Jeffrey P Townsend, Hayley B Hassler, Pratha Sah, Alison P Galvani, Alex Dornburg.
The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2.
PNAS, 2022. doi: 10.1073/pnas.2204336119

Most Popular Now

Salvat Laboratories announces submission of New Dr…

Salvat Laboratories announced that it has submitted a New Drug Application (NDA) to the FDA for the approval of the first ocular corticosteroid formulated in a nanoemulsi...

Pfizer's elranatamab granted FDA Breakthrough Ther…

Pfizer Inc. (NYSE:PFE) announced its investigational cancer immunotherapy, elranatamab, received Breakthrough Therapy Designation from the U.S. Food and Drug Administrati...

New insights on antibody responses to Omicron vari…

Knowing how well vaccination against one SARS-CoV-2 strain (with or without previous infection) counteracts infection with a different strain is a critical research quest...

Ancient viral DNA in human genome guards against i…

Viral DNA in human genomes, embedded there from ancient infections, serve as antivirals that protect human cells against certain present-day viruses, according to new res...

The origin-of-life molecule, a key to cancer resea…

RNA, the molecule that gave rise to life, has been shown to be essential for repairing human genetic material and preventing mutations that might lead to developing cance...

Bayer with continued strong performance

The Bayer Group maintained its strong business performance across all three divisions in the third quarter. "Despite rising inflation and global supply chain problems, we...

Sugar molecules as a target in cancer therapy

Cancer cells use sugar molecules on their surface to disable attacks by the body's immune system. Researchers at the University of Basel now report on how this mechanism ...

Vividion Therapeutics names Jenna Goldberg as Chie…

Vividion Therapeutics, Inc., a biopharmaceutical company utilizing novel discovery technologies to unlock high value, traditionally undruggable targets with precision the...

COVID vaccination improves effectiveness of cancer…

Patients with nasopharyngeal cancer are often treated with drugs that activate their immune system against the tumor. Until now, it was feared that vaccination against Co...

Making melanoma immortal: Pitt scientists discover…

Scientists at the University of Pittsburgh School of Medicine have discovered the missing puzzle piece in the mystery of how melanoma tumors control their mortality. I...

Pfizer and BioNTech receive positive CHMP opinion …

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced a booster dose of their Omicron BA.4/BA.5-adapted bivalent COVID-19 vaccine (COMIRNATY® Original/Omicron ...

Study reveals vaccine confidence declined consider…

A new study suggests that, despite the success of the COVID-19 vaccination campaigns, vaccine confidence has declined significantly since the start of the pandemic. Re...