Oral antiviral drug effective against respiratory syncytial virus (RSV) identified by researchers

An oral antiviral drug that targets a key part of the respiratory syncytial virus (RSV) polymerase and inhibits the synthesis of viral genetic material has been identified, a finding that could provide an effective treatment against RSV disease, according to researchers in the Center for Translational Antiviral Research at Georgia State University.

The findings, published in the journal Science Advances, identify AVG-388 as the lead drug candidate, which effectively blocks the activity of the viral RNA polymerase, an enzyme responsible for replication of the viral genome. RSV is a leading cause of lower respiratory infections in infants and immunocompromised individuals, but no efficient therapeutic exists. The virus caused an estimated 33.1 million cases worldwide in 2015 that required 3.2 million hospitalizations and resulted in 59,800 deaths.

Finding effective drugs to fight RSV has been challenging. Through mutations, RSV has escaped advanced candidate classes that prevent the virus from entering a cell. To overcome this issue, recent drug development efforts have focused on the viral RNA-dependent RNA polymerase complex of RSV because of the possible broader window of opportunity to fight the virus during viral genome replication and transcription.

"We have identified the AVG class of inhibitors of RSV RNA synthesis,” said Dr. Richard K. Plemper, senior author of the study, Distinguished University Professor and director of the Center for Translational Antiviral Research in the Institute for Biomedical Sciences at Georgia State. “Through chemical optimization, we have developed the clinical candidate AVG-388, which is orally efficacious against RSV in animal models of infection.”

In addition, the researchers demonstrated potent antiviral activity in human airway epithelium organoid cultures.

“In this study, we have mapped an exciting druggable target in the RSV RNA-dependent RNA-polymerase and established the clinical potential of the AVG inhibitor class against RSV disease,” said Dr. Julien Sourimant, first author of the study and a postdoctoral fellow in the Center for Translational Antiviral Research in the Institute for Biomedical Sciences at Georgia State.

The research team investigated the effect of treatment on viral replication at different oral doses intended to prevent or cure disease. They demonstrated that treatment reduced virus load by several orders of magnitude in the different disease models.

“Our results lay the foundation for formal development of the AVG class and the structure-guided identification of companion drugs with overlapping target sites but distinct resistance profiles,” Plemper said.

Sourimant J, Lieber CM, Yoon JJ, Toots M, Govindarajan M, Udumula V, Sakamoto K, Natchus MG, Patti J, Vernachio J, Plemper RK.
Orally efficacious lead of the AVG inhibitor series targeting a dynamic interface in the respiratory syncytial virus polymerase.
Sci Adv. 2022 Jun 24;8(25):eabo2236. doi: 10.1126/sciadv.abo2236

Most Popular Now

Lilly will supply an additional 150,000 doses of b…

Eli Lilly and Company (NYSE: LLY) announced a modified purchase agreement with the U.S. government to supply an additional 150,000 doses of bebtelovimab for approximately...

Bayer to sell men's health product Nebido™ to Grün…

Bayer and Grünenthal have entered into a definitive agreement regarding the sale of Bayer's men's health product Nebido™ (testosterone undecanoate), for a purchase price ...

Pfizer and BioNTech complete submission to Europea…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced they have completed a submission to the European Medicines Agency (EMA) for an Omicron-adapted biva...

The fourth COVID-19 vaccine reduces the risk of de…

A new study by Tel Aviv University and Ben Gurion University of the Negev, in collaboration with the Israeli Ministry of Health, has found that the fourth COVID-19 vaccin...

Vaccine protection against COVID-19 short-lived, b…

Since COVID-19 vaccines first became available to protect against infection and severe illness, there has been much uncertainty about how long the protection lasts, and w...

AstraZeneca to acquire TeneoTwo and its clinical-s…

AstraZeneca announced an agreement to acquire TeneoTwo, Inc. (TeneoTwo)i, including its Phase I clinical-stage CD19/CD3 T-cell engager, TNB-486, currently under evaluatio...

Demonstration of a potent, universal coronavirus m…

The SARS-CoV-2 that causes COVID-19 has killed 6.3 million people worldwide since 2019, painfully highlighting the vulnerability of humanity to novel coronaviruses. Re...

Research shows investigational drug fosters nerve …

Scientists from the University of Birmingham have shown that a brain-penetrating candidate drug currently in development as a cancer therapy can foster regeneration of da...

NIH launches clinical trial of mRNA Nipah virus va…

The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has launched an early-stage clinical trial evaluating an inv...

Anti-inflammatory compound shows potential in trea…

An anti-inflammatory compound may have the potential to treat systemic inflammation and brain injury in patients with severe COVID-19 and significantly reduce their chanc...

Vaccine-induced immune response to omicron wanes s…

Although COVID-19 booster vaccinations in adults elicit high levels of neutralizing antibodies against the Omicron variant of SARS-CoV-2, antibody levels decrease substan...

SARS-CoV-2 hijacks nanotubes between neurons to in…

COVID-19 often leads to neurological symptoms, such as a loss of taste or smell, or cognitive impairments (including memory loss and concentration difficulties), both dur...