Investigational COVID mucosal vaccine protects against disease and transmission

In animal studies that mimic human exposures, an investigational COVID vaccine designed to be taken orally not only protects the host, but also decreases the airborne spread of the virus to other close contacts.

The study, led by Duke researcher Stephanie N. Langel, Ph.D., demonstrated the potential of a COVID vaccine that works through the mucosal tissue to neutralize the SARS-CoV-2 virus, limiting infections and the spread of active virus in airborne particles.

The findings are published today in the journal Science Translational Medicine.

" Considering most of the world is under-immunized - and this is especially true of children - the possibility that a vaccinated person with a breakthrough infection can spread COVID to unimmunized family or community members poses a public health risk," Langel said. "There would be a substantial benefit to develop vaccines that not only protect against disease, but also reduce transmission to unvaccinated people."

Langel and colleagues - including teams from the vaccine developer, Vaxart, and a clinical research non-profit, Lovelace Biomedical Research Institute - tested a vaccine candidate that uses an adenovirus as a vector to express the spike protein of the SARS-CoV-2 virus. The human vaccine is designed to be taken as a pill.

In studies using hamsters, the vaccine elicited a robust antibody response in blood and the lungs. When the animals were exposed to the SARS-CoV-2 virus at high levels, prompting breakthrough infections, they were less symptomatic than non-vaccinated hamsters, had lower amounts of infectious virus in the nose and lungs. Because of this, they did not shed as much virus through normal airborne exposures.

Unlike vaccines that are injected into the muscle, Langel said, mucosal immunizations increase production of immunoglobulin A (IgA) - the immune system’s first line of defense against pathogens - in the nose and lungs. These mucosal ports of entry are then protected, making it less likely that those who are vaccinated will transmit infectious virus during a sneeze or cough.

"Our data demonstrate that mucosal immunization is a viable strategy to decrease the spread of COVID through airborne transmission," Langel said.

Langel said the study focused on the original SARS-CoV-2 virus, and new studies will be designed to test the vaccine against Omicron variants.

Stephanie N Langel, Susan Johnson, Clarissa I Martinez, Sarah N Tedjakusuma, Nadine Peinovich, Emery G Dora, Philip J Kuehl, Hammad Irshad, Edward G Barrett, Adam Werts, Sean N Tucker.
Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model.
Science Translational Medicine, 2022. doi: 10.1126/scitranslmed.abn6868

Most Popular Now

Salvat Laboratories announces submission of New Dr…

Salvat Laboratories announced that it has submitted a New Drug Application (NDA) to the FDA for the approval of the first ocular corticosteroid formulated in a nanoemulsi...

Pfizer's elranatamab granted FDA Breakthrough Ther…

Pfizer Inc. (NYSE:PFE) announced its investigational cancer immunotherapy, elranatamab, received Breakthrough Therapy Designation from the U.S. Food and Drug Administrati...

New insights on antibody responses to Omicron vari…

Knowing how well vaccination against one SARS-CoV-2 strain (with or without previous infection) counteracts infection with a different strain is a critical research quest...

Ancient viral DNA in human genome guards against i…

Viral DNA in human genomes, embedded there from ancient infections, serve as antivirals that protect human cells against certain present-day viruses, according to new res...

The origin-of-life molecule, a key to cancer resea…

RNA, the molecule that gave rise to life, has been shown to be essential for repairing human genetic material and preventing mutations that might lead to developing cance...

Bayer with continued strong performance

The Bayer Group maintained its strong business performance across all three divisions in the third quarter. "Despite rising inflation and global supply chain problems, we...

Sugar molecules as a target in cancer therapy

Cancer cells use sugar molecules on their surface to disable attacks by the body's immune system. Researchers at the University of Basel now report on how this mechanism ...

Vividion Therapeutics names Jenna Goldberg as Chie…

Vividion Therapeutics, Inc., a biopharmaceutical company utilizing novel discovery technologies to unlock high value, traditionally undruggable targets with precision the...

COVID vaccination improves effectiveness of cancer…

Patients with nasopharyngeal cancer are often treated with drugs that activate their immune system against the tumor. Until now, it was feared that vaccination against Co...

Making melanoma immortal: Pitt scientists discover…

Scientists at the University of Pittsburgh School of Medicine have discovered the missing puzzle piece in the mystery of how melanoma tumors control their mortality. I...

Pfizer and BioNTech receive positive CHMP opinion …

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced a booster dose of their Omicron BA.4/BA.5-adapted bivalent COVID-19 vaccine (COMIRNATY® Original/Omicron ...

Study reveals vaccine confidence declined consider…

A new study suggests that, despite the success of the COVID-19 vaccination campaigns, vaccine confidence has declined significantly since the start of the pandemic. Re...