Treatments in weeks, not months: Scientists develop ambitious pandemic response plan

An international team of scientists has created a plan for an accelerated pipeline for developing drug cocktails to battle the COVID-19 pandemic. The pipeline could speed new and better treatments that the newly diagnosed and recently exposed could take at home to prevent serious illness.

The "proactive drug development strategy" could also offer a first line of defense against future pandemics, the researchers say. The approach would allow scientists to be ready with an arsenal of drugs that could be quickly moved into clinical trials when a dangerous new infection appears, whether a coronavirus or another pathogen. The goal: Make effective treatments available in weeks, not months or years.

"We need to proactively develop drug cocktails against virus families as a whole - for example, all coronaviruses - to be ready on day one if a new virus or variant emerges. The cocktail should be low cost, easy to transport and distribute, and easy to self-administer - therefore available to people across the globe," said researcher Judith M. White, PhD, a professor emeritus at the University of Virginia School of Medicine. "We hope that this concept of 'smart drug cocktails' - smart because of the choice of drugs for testing and computer modeling of their effectiveness in humans - will be the basis for a robust, coordinated effort against coronaviruses and other pathogenic viruses, such as Zika and Lassa fever viruses, just to name a few."

Fast, Safe, Effective Pandemic Response

The new strategy comes from White, of UVA’s Departments of Cell Biology and Microbiology, Immunology and Cancer Biology; and colleagues in Seattle, at the University of Washington and the Fred Hutchinson Cancer Research Center; the University of Maryland; and MRI Global, as well as collaborators in Estonia, Finland and Norway. The scientists believe that prioritizing the development of drug cocktails - treatments that combine two or more medicines - would reduce the burden on healthcare systems and help prevent disease spread by limiting a virus’ ability to adapt to its hosts. This type of combination approach is already the norm for treating viruses such as HIV.

The researchers outline a five-point plan to accelerate the identification and administration of effective drug cocktails:

  • Prioritize drugs that people could take at home, either by mouth or inhalation, after exposure or when symptoms first appear.
  • Focus on drug combinations, rather than individual drugs, to reduce the chance viruses will become drug resistant.
  • Prioritize drugs that are already approved or in advanced clinical trials, to accelerate how quickly their safety and effectiveness can be assured.
  • Focus on drugs that can be given to people at doses that will yield anti-viral effects without toxic side effects.
  • Use advanced computer models to identify useful drug combinations and speed development.

To demonstrate the potential of computer modeling for this purpose, Joshua T. Schiffer, MD, of Fred Hutch, developed a model to assess the potential clinical effectiveness of drug pairs for treating COVID-19. Pairing drugs, the researchers say, could make for treatments that are more effective than individual drugs alone. Identifying drugs with this type of "synergy," they say, could potentially turn two medicines of only modest benefit into a potent treatment.

"Models that incorporate both the properties of the drugs and the biology of the virus spreading against an immune response can be used to identify the best way to dose promising treatments," Schiffer said. "These models suggest strategically combining drugs may add substantial benefit."

The scientists emphasize that better treatments for COVID-19 will not supplant the need for vaccination and are a complement to existing strategies. But they say their strategy could lead to better outcomes for patients who contract COVID-19 - or the next dangerous virus waiting in the wings.

"Having easily deployable, easily administered, inexpensive drug cocktails on the shelf when a new virus outbreak occurs would buy time from virus discovery to development and roll out of sequence-dependent countermeasures like vaccines and designer drugs, and could therefore blunt the initial stages of an epidemic," White said.

White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ.
Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses.
mBio. 2021 Dec 21;12(6):e0334721. doi: 10.1128/mbio.03347-21

Most Popular Now

COVID-19 can trigger self-attacking antibodies

Infection with the virus that causes COVID-19 can trigger an immune response that lasts well beyond the initial infection and recovery - even among people who had mild sy...

Stopping dementia at the nose with combination of …

Dementia is thought to occur when proteins called amyloid-β, tau, and α-synuclein accumulate in the brain and form oligomers. A research group from the Department of Tran...

Treatments in weeks, not months: Scientists develo…

An international team of scientists has created a plan for an accelerated pipeline for developing drug cocktails to battle the COVID-19 pandemic. The pipeline could speed...

COVID-19 - Omicron: resistant to most monoclonal a…

The Omicron variant was detected for the first time in South Africa in November 2021 and has since spread to many countries. It is expected to become the dominant variant...

Scientists identify antibodies that can neutralize…

An international team of scientists have identified antibodies that neutralize omicron and other SARS-CoV-2 variants. These antibodies target areas of the virus spike pro...

Pfizer and BioNTech sign new global collaboration …

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced a new research, development and commercialization collaboration to develop a potential first mRNA-based v...

Novartis and Molecular Partners report positive to…

Novartis and Molecular Partners announced that Part A of the EMPATHY clinical trial(1) that compared single intravenous doses of ensovibep, a DARPin antiviral therapeutic...

Bayer and Mammoth Biosciences to collaborate on no…

Bayer AG and Mammoth Biosciences, Inc., which is harnessing the diversity of nature to power the next-generation CRISPR products, today announced a strategic collaboratio...

Amgen and Arrakis Therapeutics announce multi-targ…

Amgen (NASDAQ:AMGN) and Arrakis Therapeutics today announced a research collaboration focused on the discovery and development of RNA degrader therapeutics against a rang...

Leiden University Medical Center and Intravacc to …

Intravacc, a global leader in translational research and development of therapeutic vaccines and vaccines against infectious diseases, today announced a partnership with ...

New Vaxzevria data further support its use as thir…

Positive results from a preliminary analysis of an ongoing safety and immunogenicity trial (D7220C00001) showed that Vaxzevria (ChAdOx1-S [Recombinant]), when given as a ...

AstraZeneca and Ionis close agreement to develop a…

AstraZeneca has closed a global development and commercialisation agreement with Ionis Pharmaceuticals, Inc. (Ionis) for eplontersen, formerly known as IONIS-TTR-LRX. ...