Nasal vaccine may aid fight against new viral variants

The emergence of COVID-19 variants such as delta and omicron have sent scientists scrambling to determine whether existing vaccinations and boosters are still effective against new strains of SARS-Cov-2.

A new response to the rapidly mutating virus might be found right at the door to our lungs, says Yale's Akiko Iwasaki, the Waldemar Von Zedtwitz Professor of Immunobiology. In a new study, she and her colleagues found that intranasal vaccination provides broad-based protection against heterologous respiratory viruses in mice, while so-called systemic immunization, which uses an injection to elicit body-wide protection, did not.

Their findings are published Dec. 10 in the journal Science Immunology.

"The best immune defense happens at the gate, guarding against viruses trying to enter," said Iwasaki, senior author of the study.

Mucous membranes contain their own immune defense system that combat air- or foodborne pathogens. When challenged, these barrier tissues produce B cells which in turn secrete immunoglobin A (IgA) antibodies. Unlike vaccines which elicit a system-wide immune response, IgA antibodies work locally on mucosal surfaces found in the nose, stomach, and lungs.

While the protective role of IgA-producing cells had been well established in combatting intestinal pathogens, Iwasaki's lab wondered if triggering IgA response might also produce a localized immune response against respiratory viruses.

Working with researchers at Icahn School of Medicine at Mount Sinai in New York, they tested a protein-based vaccine designed to jump start an IgA immune response, administering it to mice through injections, as is commonly done with systemic immunizations, and also intranasally. They then exposed mice to multiple strains of influenza viruses. They found that mice which had received vaccine intranasally were much better protected against the respiratory influenza than those that received injections. Nasal vaccines, but not the shot, also induced antibodies that protected the animals against a variety of flu strains, not just against the strain the vaccine was meant to protect against.

The Yale team is currently testing nasal vaccine strains against COVID strains in animal models.

While both vaccine injections and nasal vaccines increased levels of antibodies in the blood of mice, only the nasal vaccine enabled IgA secretion into the lungs, where respiratory viruses need to lodge to infect the host, Iwasaki said.

If the nasal vaccines prove to be safe and efficient in humans, Iwasaki envisions them being used in conjunction with current vaccines and boosters that work system wide in order to add immune system reinforcements at the source of infection.

Ji Eun Oh, Eric Song, Miyu Moriyama, Patrick Wong, Sophia Zhang, Ruoyi Jiang, Shirin Strohmeier, Steven H Kleinstein, Florian Krammer, Akiko Iwasaki.
Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA.
Science Immunology, 2021. doi: 10.1126/sciimmunol.abj5129

Most Popular Now

FDA approves RIABNI™ (rituximab-arrx), a biosimila…

Amgen (NASDAQ:AMGN) today announced that the U.S. Food and Drug Administration (FDA) has approved RIABNI™ (rituximab-arrx), a biosimilar to Rituxan®, in combination with ...

Sandoz announces new global 'Act4Biosimilars' init…

Sandoz, a global leader in generic and biosimilar medicines, announced the launch of a new global initiative called 'Act4Biosimilars' to help address health inequity and ...

Blocking enzyme could hold the key to preventing, …

Blocking an immune response-related enzyme holds promise in preventing or treating severe COVID-19 symptoms by reducing inflammation, tissue injury and blood clots in the...

Pfizer to invest $120 million to produce COVID-19 …

Pfizer Inc. (NYSE: PFE) announced today that it will further strengthen its commitment to United States manufacturing with a $120 million investment at its Kalamazoo, Mic...

GSK to acquire clinical-stage biopharmaceutical co…

GSK plc (LSE/NYSE: GSK) announced that it has entered into a definitive agreement to acquire Affinivax, Inc. (Affinivax), a clinical-stage biopharmaceutical company based...

Positive Phase 1 data from mRNA-based individualiz…

BioNTech SE (Nasdaq: BNTX, "BioNTech") announced initial data from an ongoing investigator-initiated first-in-human Phase 1 study evaluating the safety and tolerability o...

Proteomic study of 2,002 tumors identifies 11 pan-…

A new study that analyzed protein levels in 2,002 primary tumors from 14 tissue-based cancer types identified 11 distinct molecular subtypes, providing systematic knowled...

Sanoff offers perspective on a promising rectal ca…

UNC Lineberger Comprehensive Cancer Center's Hanna K. Sanoff, MD, MPH, is the author of a viewpoint in the New England Journal of Medicine that provides a perspective on ...

A new technology offers treatment for HIV infectio…

A new study from Tel Aviv University offers a new and unique treatment for AIDS which may be developed into a vaccine or a one time treatment for patients with HIV. The s...

Boehringer Ingelheim signs option to acquire Truti…

Boehringer Ingelheim announced the signing of an option to acquire Trutino Biosciences Inc. (the "Transaction"), a San Diego-based biotech company. Trutino Biosciences...

Broadly neutralizing antibodies could provide immu…

Two broadly neutralizing antibodies show great promise to provide long-acting immunity against COVID-19 in immunocompromised populations according to a paper published Ju...

Novel drug combo activates natural killer cell imm…

Most skin cancer drugs that activate the immune system work by triggering immune cells, called T cells, to attack tumors, but when T cells are activated for too long, the...