New finding could lead to development of hundreds of new antibiotics

EU-funded scientists have discovered a new molecule in Streptomyces bacteria that could be exploited to make the bacteria produce hundreds of novel antibiotics. The work, which is published online by the Proceedings of the National Academy of Sciences (PNAS), was partly supported by the EU-funded ACTINOGEN (Integrating genomics-based applications to exploit actinomycetes as a resource for new antibiotics) project.

When colonies of bacteria such as Streptomyces are under stress and so more vulnerable to attack from other bacteria, a signal is sent out across the colony that stimulates the bacteria to make antibiotics as a defence mechanism.

Drug manufacturers have exploited this characteristic of the Streptomyces bacteria for some time, using certain strains to produce antibiotics on an industrial scale. In most of these cases, the compounds used to trigger the bacterial defence mechanism are relatively unstable.

In this latest piece of research, scientists from the University of Warwick and the John Innes Centre in the UK succeeded in identifying a much more stable group of compounds called 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (AHFCAs) that could have the potential to stimulate different pathways of antibiotic production in the bacteria. This could eventually lead to the development of many novel antibiotics.

Normally the amounts of these defence-mechanism-triggering compounds produced by the bacteria are too small for chemists to analyse easily. In this study, the scientists used the University of Warwick's 700 MHz NMR (Nuclear Magnetic Resonance) machine to identify the AHFCAs on the basis of just a few micrograms of material.

The chemists combined their newfound knowledge with information on the genetic sequences of some Streptomyces bacteria to show that the AHFCA group of compounds could potentially be used to stimulate the production of both known and new antibiotics. Their hypothesis was confirmed when they added the AHFCAs to colonies of the W81 strain of Streptomyces coelicolor; the bacteria produced methylenomycin antibiotics.

Although methylenomycins are a familiar type of antibiotic, the researchers believe that the AHFCAs could also control the production of novel types of antibiotic.

"Early results also suggest that this approach could switch on novel antibiotic production pathways in up to 50% of Streptomyces bacteria," said Dr Christophe Corre of the University of Warwick, the lead author of the paper. "With thousands of known members of the Streptomyces family that could mean that AHFCAs could unlock hundreds of new antibiotics to replenish our dwindling arsenal of effective antibiotic drugs."

The researchers are now on the lookout for funding to explore the properties of AHFCAs further.

The ACTINOGEN project received approximately EUR 9.4 million in EU funding through the 'Life sciences, genomics and biotechnology for health' Thematic area of the Sixth Framework Programme (FP6).

For more information, please visit:

Proceedings of the National Academy of Sciences (PNAS), http://www.pnas.org

University of Warwick, http://www.warwick.ac.uk

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Bayer to accelerate drug discovery with Google Clo…

Bayer AG and Google Cloud announced a collaboration to drive early drug discovery that will apply Google Cloud's Tensor Processing Units (TPUs), which are custom-develope...

NextPoint Therapeutics announces $80 million Serie…

NextPoint Therapeutics, a biotechnology company developing a new world of precision immuno-oncology, announced today that it raised $80 million in Series B financing co-l...

AstraZeneca to acquire CinCor Pharma to strengthen…

AstraZeneca has entered into a definitive agreement to acquire CinCor Pharma, Inc. (CinCor), a US-based clinical-stage biopharmaceutical company, focused on developing no...

Acquisition of Neogene Therapeutics completed

AstraZeneca has completed the acquisition of Neogene Therapeutics Inc. (Neogene), a global clinical-stage biotechnology company pioneering the discovery, development and ...

Pfizer expands 'An Accord for a Healthier World' p…

Pfizer Inc. (NYSE: PFE) announced that it has significantly expanded its commitment to An Accord for a Healthier World to offer the full portfolio of medicines and vaccin...

500,000 missed out on blood pressure lowering drug…

Nearly half a million people missed out on starting medication to lower their blood pressure during the COVID-19 pandemic, according to research supported by the British ...

Study identifies potential new approach for treati…

Targeting iron metabolism in immune system cells may offer a new approach for treating systemic lupus erythematosus (SLE) - the most common form of the chronic autoimmune...

Nanotechnology may improve gene therapy for blindn…

Using nanotechnology that enabled mRNA-based COVID-19 vaccines, a new approach to gene therapy may improve how physicians treat inherited forms of blindness. A collabo...

Roche announces the European Commission approval o…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced that the European Commission (EC) has approved Xofluza® (baloxavir marboxil) in children aged one year and above for the trea...

Modified CRISPR-based enzymes improve the prospect…

Many genetic diseases are caused by diverse mutations spread across an entire gene, and designing genome editing approaches for each patient’s mutation would be impractic...

A soybean protein blocks LDL cholesterol productio…

A protein in soybeans blocks the production of a liver enzyme involved in the metabolism of triglycerides and low-density lipoprotein, scientists found in a recent study...

Discovery of anti-cancer chemistry makes skullcap …

The evolutionary secrets that enable the medicinal herb known as barbed skullcap to produce cancer fighting compounds have been unlocked by a collaboration of UK and Chin...