Discovery of mechanics of drug targets for COVID-19

A team of international researchers, including McGill Professor Stéphane Laporte, have discovered the working mechanism of potential drug targets for various diseases such as cancer, rheumatoid arthritis, and even COVID-19. The findings published in Molecular Cell uncover the inner workings of cell receptors that are involved in cancer progression and inflammatory diseases.

"The complement system is an integral part of our body's defense mechanism against pathogenic attacks including viruses. When bacteria or viruses enter our body, the complement system is activated including two different membrane receptors called C5aR1 and C5aR2," says Arun Shukla, the Joy Gill Chair Professor at IIT Kanpur who spearheaded the study. "While activation of the complement system is essential to combat harmful pathogens, excessive and sustained activation leads to inflammation, even life-threatening conditions like the ones responsible for severe complications in COVID-19."

Using cutting-edge technologies such as CRISPR and cryogenic electron microscopy, the researchers unraveled the inner workings of C5aR2, providing an additional opportunity for therapeutic targeting for COVID-19. "To treat COVID-19, some scientists are already trying to block the activation of the C5aR1 receptor and clinical trials are already underway for Avdoralimab in patients with COVID-19 induced sever pneumonia. Our study opens up the possibility of targeting C5aR2 by designing new drug molecules that can bind to this receptor and block its activation and inflammation response," says Stéphane Laporte, a Professor in the Faculty of Medicine and Health Sciences.

Cells in the human body are surrounded by receptors that are important drug targets where medicines produce their beneficial effects. These receptors work as messengers because they receive and transmit signals that allow the cells to trigger physiological processes in our body, the researchers explain.

"We are very excited to decipher the finer details of these receptors using cutting-edge technologies. Such information should enhance our fundamental knowledge about cellular signaling and allow us to translate our findings into novel drug discovery," concludes Arun Shukla.

Shubhi Pandey, Punita Kumari, Mithu Baidya, Ryoji Kise, Yubo Cao, Hemlata Dwivedi-Agnihotri, Ramanuj Banerjee, Xaria X Li, Cedric S Cui, John D Lee, Kouki Kawakami, Jagannath Maharana, Ashutosh Ranjan, Madhu Chaturvedi, Gagan Deep Jhingan, Stéphane A Laporte, Trent M Woodruff, Asuka Inoue, Arun K Shukla.
Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors.
Molecular Cell, 2021. doi: 10.1016/j.molcel.2021.09.007

Most Popular Now

Primary endpoint met in COMET-TAIL Phase III trial…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Vir Biotechnology, Inc. (Vir) (Nasdaq: VIR) announced headline data from the randomised, multi-centre, open-label COMET-TAIL Phase...

Merck and Ridgeback's molnupiravir, an oral COVID-…

Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Ridgeback Biotherapeutics announced that the United Kingdom Medicines and Healthcare products Re...

Two billion doses of AstraZeneca’s COVID-19 vaccin…

AstraZeneca and its partners have released for supply two billion doses of their COVID-19 vaccine to more than 170 countries across every continent on the planet in the l...

Johnson & Johnson COVID-19 vaccine named one o…

The editors of Time announced that the Johnson & Johnson COVID-19 vaccine has been selected as one of Time's Best Inventions of 2021. The vaccine, for which Johnson & ...

New target for COVID-19 vaccines identified

Next generation vaccines for COVID-19 should aim to induce an immune response against 'replication proteins', essential for the very earliest stages of the viral cycle, c...

Safety concerns raised for neuroblastoma candidate…

St. Jude Children's Research Hospital scientists looking for drugs to improve survival of children with high-risk neuroblastoma found a promising candidate in CX-5461. Th...

Pfizer's novel COVID-19 oral antiviral treatment c…

Pfizer Inc. (NYSE: PFE) today announced its investigational novel COVID-19 oral antiviral candidate,PAXLOVID™, significantly reduced hospitalization and death, based on a...

Repurposing a familiar drug for COVID-19

For the past year and a half, the COVID-19 pandemic has continued to engulf the globe, fueled in part by novel variants and the uneven distribution of vaccines. Every day...

'Dancing molecules' successfully repair severe spi…

Northwestern University researchers have developed a new injectable therapy that harnesses “dancing molecules” to reverse paralysis and repair tissue after severe spinal ...

Researchers reveal a strategy for next-generation …

A study led by the Garvan Institute of Medical Research has revealed a guide to developing COVID-19 vaccines that both prevent the coronavirus from infecting human cells ...

A target for potential cancer drugs may, in fact, …

In recent years, much scientific effort and funding has focused on developing drugs that target an enzyme with the unwieldy name of Src homology 2-containing protein tyro...

Pfizer to provide U.S. government with 10 million …

Pfizer Inc. (NYSE: PFE) today announced an agreement with the U.S. government to supply 10 million treatment courses of its investigational COVID-19 oral antiviral candid...