Using personalized medicine to avoid resistance to leukemia treatment

T-cell acute lymphoblastic leukemia (T-ALL) is a very aggressive type of blood cancer. It is relatively rare but still draws a lot of attention as it mostly develops in children under the age of 20. The standard treatment for T-ALL involves heavy chemotherapy procedures, which result in favorable outcomes with an overall survival of 75% after 5 years.

However, some patients do not respond to this treatment, or they only respond for a short period, after which the disease grows back. These patients therefore need alternative therapies.

Researchers from the Faculty of Health and Medical Sciences, University of Copenhagen, have now identified a combination treatment, which could potentially benefit patients that do not respond to standard chemotherapy.

"Our study suggests that we could use personalized medicine to target the cancer cells in the subgroup of T-ALL patients that do not initially respond to or stop responding to the standard chemotherapy. By combining two specific protein inhibitors, we have shown that we can obtain a strong and durable effect on leukemia cell growth. This might improve the overall survival of T-ALL patients," says Giulia Franciosa, Assistant Professor at the Novo Nordisk Foundation Center for Protein Research.

Targeting two proteins to avoid resistance

The majority of T-ALL patients have mutations in the so-called Notch1 gene. This mutation causes a cell surface receptor to induce cancer cell growth. By using a drug that inhibits this receptor, it is possible to stop the cancer cells from dividing and growing. Unfortunately, the cancer cells are good at adapting and in many cases develop resistance towards the Notch-inhibitor.

'The challenge we are facing with drug resistance is very hard to overcome as long as we are only targeting one protein, in this case the Notch1 receptor, at a time. That is why we have been looking for a therapy option that targets two proteins at the same time, making it much more difficult for the cancer cells to develop resistance. And we found one', says Giulia Franciosa.

Mass spectrometry proteomics gives unbiased answers

By comparing cells that are sensitive to Notch-inhibition with cells that are resistant - either from the beginning or develop resistance over time - the researchers identified a specific signaling protein responsible for the drug resistance: Kinase C. By targeting both proteins at the same time, they were able to eliminate the resistance.

"We used high-resolution mass spectrometry based proteomics to study the underlying molecular mechanisms that cause the resistance. The proteomics technology allows us to analyze the entire set of proteins, the proteome, present in a cell at the same time. By using this technique, we can map out differences and similarities between the responsive and non-responsive cells in an unbiased way. And that is how we found that Protein Kinase C activity is upregulated in resistant cells," says Jesper Velgaard Olsen, Professor at the Novo Nordisk Foundation Center for Protein Research.

The researchers hope that their findings in time can be used in the treatment of T-ALL patients who do not tolerate or respond to standard chemotherapy.

Franciosa, G., Smits, J.G.A., Minuzzo, S. et al.
Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures.
Nat Commun, 2021. doi: 10.1038/s41467-021-22787-9

Most Popular Now

Novartis signs initial agreement to reserve capaci…

Novartis has signed an initial agreement with Roche to reserve capacity and implement the technology transfer for the production of the active pharmaceutical ingredient (...

Pfizer acquires Amplyx Pharmaceuticals

Pfizer Inc. (NYSE: PFE) announced today that it has acquired Amplyx Pharmaceuticals, Inc., a privately-held company dedicated to the development of therapies for debilita...

Moderna announces additional investments to increa…

Moderna, Inc. (Nasdaq: MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, today announced it is making new funding commitments to i...

Moderna announces emergency use listing granted by…

Moderna, Inc. (Nasdaq: MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, announced that the World Health Organization (WHO) has is...

Sanofi to help manufacture Moderna COVID-19 vaccin…

Sanofi has entered into an agreement with Moderna, under which Sanofi will help manufacture Moderna's COVID-19 vaccine, supporting the COVID-19 pandemic and vaccine suppl...

Valneva switches focus to bilateral discussions to…

Valneva SE, a specialty vaccine company focused on the development and commercialization of prophylactic vaccines for infectious diseases with significant unmet medical n...

Speeding new treatments

A year into the COVID-19 pandemic, mass vaccinations have begun to raise the tantalizing prospect of herd immunity that eventually curtails or halts the spread of SARS-Co...

Pfizer and BioNTech to supply the European Union w…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced they will supply an additional 100 million doses of COMIRNATY®, the companies' COVID-19 vaccine, to the 2...

Brazilian coronavirus variant likely to be more tr…

Even though more and more vaccines against the coronavirus are being administered all over the world, many countries are still battling with outbreaks and face difficulti...

Patients who are obese or overweight are at risk f…

COVID-19 patients who are overweight or obese are more likely to develop a more severe infection than patients of healthy weight, and they require oxygen and invasive mec...

Updated results on coronavirus vaccination effecti…

Several weeks following the publication of the large real-world COVID-19 vaccine effectiveness study by the Clalit Research Institute in Collaboration with Harvard Univer...

Our immune systems blanket the SARS-CoV-2 spike pr…

The most complete picture yet is coming into focus of how antibodies produced in people who effectively fight off SARS-CoV-2 work to neutralize the part of the virus resp...