Hepatitis C drugs multiply effect of COVID-19 antiviral Remdesivir

When combined with drugs currently used to treat hepatitis C, the antiviral remdesivir is 10 times more effective in treating cells infected with SARS-CoV-2, the virus that causes COVID-19.

Published this week in Cell Reports, this finding - from Gaetano Montelione, a professor of chemistry and chemical biology at Rensselaer Polytechnic Institute, and his collaborators at the Icahn School of Medicine at Mount Sinai and the University of Texas at Austin - raises the potential for repurposing available drugs as COVID-19 antivirals in cases where a vaccine isn't practical or effective.

Remdesivir, which blocks viral replication by interfering with a viral polymerase, must be administered intravenously, limiting its use only to patients sick enough to be admitted to a hospital. However, the efficacy of the drug combination would extend to other polymerase inhibitors, of which at least one orally administered version is under development, making possible an oral drug combination that could be taken at home.

"Nearly 3 million people have died worldwide from COVID-19. There are situations where the vaccine isn't the best option and it would be helpful to have orally available antivirals," said Montelione, a member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS). "Here we see a promising synergy that, if confirmed through additional research and clinical trials, could provide a new antiviral to combat COVID-19."

Repurposed drugs, already approved for use as therapeutics for a different disease, could potentially be approved for clinical use more rapidly than newly developed, more specific, and potent drugs. Remdesivir itself is a repurposed antiviral drug, originally developed to treat hepatitis C, Ebola virus disease, and other viral infections.

"Repurposed drugs have the potential to be tested and approved quickly for safe use, while more effective therapies are under development" said Robert Krug, virologist and professor emeritus at the University of Texas at Austin, who helped to initiate the collaboration, interpret the results, and write the paper.

The Cell Reports paper identifies four hepatitis C drugs, simeprevir, grazoprevir, paritaprevir, and vaniprevir, which exhibited a synergistic effect - an effect that is greater than the sum of its parts. For example, when administered at low doses to virus-infected cells in the presence of simeprevir, 10 times less remdesivir is needed to inhibit 90% of the virus than when remdesivir is used on its own. Increasing the efficacy of the polymerase inhibitor remdesivir reduces the dosage required, and therefore could be more effective, and also reduce unwanted side effects in treating COVID-19.

The researchers discovered the synergistic effect as part of an effort to identify existing drugs that could be used against COVID-19. Remdesivir and the hepatitis C drugs inhibit viral replication, but they target different aspects of the process. The RNA that the virus injects into the cell causes it to make two polyproteins, which are then cut into more than two dozen smaller pieces that help to replicate the virus, and make excellent targets for antivirals that block their activity. Remdesivir targets a polymerase cluster, but many antivirals target viral proteases, enzymes that are required for the life cycle of the virus.

In earlier work, Montelione, Krug, and Khushboo Bafna, a postdoctoral fellow at Rensselaer, used a bioinformatics approach to identify existing proteins that resemble the coronavirus protease structures. The search identified a "striking similarity" with a protease from the hepatitis C virus, which is the target of several approved drugs. This similarity between the structures of key proteases of the two viruses raised the possibility that existing drugs that bind and block the hepatitis C protease would have the same effect on at least one of the proteases, called Mpro, in SARS-CoV-2. That possibility was borne out by multiple subsequent studies, including Bafna's docking simulations using supercomputer facilities at the Rensselaer Center for Computational Innovations, predicting the effect of various hepatitis C drugs on the SARS-CoV-2 Mpro.

In Cell Reports, the team performed protein binding and viral replication studies with the SARS-CoV-2 virus, remdesivir, and 10 hepatitis C drugs, some of which are already approved by the Food and Drug Administration. Seven of the drugs, tested in a secure biocontainment facility at Mount Sinai, inhibit Mpro and suppress the replication of SARS-CoV-2 virus. These studies were enabled by specialized expertise in the laboratories of research collaborators Adolfo García-Sastre and Kris White at Mount Sinai.

But a careful analysis of the data revealed that three hepatitis C drugs were acting not only on Mpro, but also on second viral protease, the papain-like protease, called PLpro. It is this activity that creates the synergy with the polymerase inhibitor remdesivir. These results indicate that PLpro is an important target for future antiviral drug development, especially for virus variants that are resistant to vaccine-generated antibodies.

"The identification of PLpro as an antiviral target that has a synergistic effect with remdesivir is a very important finding. We hope this work will encourage the development of specific SARS-CoV-2 PLpro inhibitors for inclusion in combination therapies with polymerase inhibitors to produce a highly effective antiviral cocktail that will also prevent the rise of resistance mutations," said Kris White, an assistant professor at Mount Sinai School of Medicine.

Adolfo García-Sastre, professor of virology at Mount Sinai emphasized, "Combined use of remdesivir with an inhibitor of the PLpro for the treatment of COVID-19 would also reduce the possibility of selecting SARS-CoV-2 resistant viruses."

Bafna K, White K, Harish B, Rosales R, Ramelot TA, Acton TB, Moreno E, Kehrer T, Miorin L, Royer CA, García-Sastre A, Krug RM, Montelione GT.
Hepatitis C Virus Drugs That Inhibit the SARS-CoV-2 Papain-Like Protease Synergize with Remdesivirto Suppress Viral Replication in Cell Culture.
Cell Reports, 2021. doi: 10.1016/j.celrep.2021.109133

Most Popular Now

Novartis signs initial agreement to reserve capaci…

Novartis has signed an initial agreement with Roche to reserve capacity and implement the technology transfer for the production of the active pharmaceutical ingredient (...

Pfizer acquires Amplyx Pharmaceuticals

Pfizer Inc. (NYSE: PFE) announced today that it has acquired Amplyx Pharmaceuticals, Inc., a privately-held company dedicated to the development of therapies for debilita...

Moderna announces additional investments to increa…

Moderna, Inc. (Nasdaq: MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, today announced it is making new funding commitments to i...

Moderna announces emergency use listing granted by…

Moderna, Inc. (Nasdaq: MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, announced that the World Health Organization (WHO) has is...

Sanofi to help manufacture Moderna COVID-19 vaccin…

Sanofi has entered into an agreement with Moderna, under which Sanofi will help manufacture Moderna's COVID-19 vaccine, supporting the COVID-19 pandemic and vaccine suppl...

Valneva switches focus to bilateral discussions to…

Valneva SE, a specialty vaccine company focused on the development and commercialization of prophylactic vaccines for infectious diseases with significant unmet medical n...

Speeding new treatments

A year into the COVID-19 pandemic, mass vaccinations have begun to raise the tantalizing prospect of herd immunity that eventually curtails or halts the spread of SARS-Co...

Pfizer and BioNTech to supply the European Union w…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced they will supply an additional 100 million doses of COMIRNATY®, the companies' COVID-19 vaccine, to the 2...

Brazilian coronavirus variant likely to be more tr…

Even though more and more vaccines against the coronavirus are being administered all over the world, many countries are still battling with outbreaks and face difficulti...

Patients who are obese or overweight are at risk f…

COVID-19 patients who are overweight or obese are more likely to develop a more severe infection than patients of healthy weight, and they require oxygen and invasive mec...

Updated results on coronavirus vaccination effecti…

Several weeks following the publication of the large real-world COVID-19 vaccine effectiveness study by the Clalit Research Institute in Collaboration with Harvard Univer...

Our immune systems blanket the SARS-CoV-2 spike pr…

The most complete picture yet is coming into focus of how antibodies produced in people who effectively fight off SARS-CoV-2 work to neutralize the part of the virus resp...