Philips develops ultrasound-activated microbubbles for localized delivery of cancer drugs

Philips is developing an ultrasound-based drug delivery technology that is designed to increase the effectiveness and reduce the side effects of chemotherapy treatment for certain types of cancer. The system proposes the use of drug-loaded microbubbles, no larger than red blood cells, that can be injected into the patient's bloodstream, tracked via ultrasound imaging, and then ruptured by a focused ultrasound pulse to release their drug payload when they reach the desired spot. Because the drugs would only be released at the site of the diseased tissue, the patient’s total body exposure to them could be limited. For certain types of treatment - for example, chemotherapy for breast cancer - this could help to reduce unpleasant side effects.

The use of microbubbles in conjunction with medical ultrasound imaging is not new. However, at the moment in clinical practice, microbubbles are only used as contrast agents for example to highlight blood in the ultrasound images - an application that relies on the fact that microbubbles reflect ultrasound much better than blood or soft tissue.

The drug delivery technology being developed by scientists at Philips Research continues to utilize the contrast-enhancing capabilities of microbubbles to help ultrasound operators to locate tumors - based on their density and the fact that tumors typically grow a recognizable network of small blood vessels around themselves. What's new is that it then shatters the shells of the microbubbles in these blood vessels using a focused high-energy ultrasound pulse. As a result, the drugs contained in the microbubbles are released directly inside the tumor.

Philips is working with several academic partners, including the University of Virginia (USA) and the University of Muenster (Germany), to refine the technology. Clinical institutions, such as The Methodist Hospital in Houston (USA), are also actively researching this new and exciting field of ultrasound mediated drug delivery.

"More and more, patients are demanding treatment options that allow them to maintain their quality of life during the treatment regime, without sacrificing treatment efficacy," comments King Li, MD, Chair of the Department of Radiology at the Methodist Hospital in Houston (USA) and Professor of Radiology, Weill Cornell Medical College (USA). "The non-invasive nature of ultrasound mediated delivery is a step in this direction. Work at our and other institutions using ultrasound for drug delivery and treatment guidance has shown the potential of this technology in pre-clinical studies."

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified Health and Well-being company, focused on improving people’s lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of "sense and simplicity". Headquartered in the Netherlands, Philips employs approximately 133,000 employees in more than 60 countries worldwide. With sales of EUR 27 billion in 2007, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare. News from Philips is located at www.philips.com/newscenter.

Most Popular Now

Pfizer to provide U.S. government with 10 million …

Pfizer Inc. (NYSE: PFE) today announced an agreement with the U.S. government to supply 10 million treatment courses of its investigational COVID-19 oral antiviral candid...

GSK and Vir Biotechnology announce United States g…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Vir Biotechnology, Inc. (Nasdaq: VIR) announced US government contracts totalling approximately $1 billion[1] (USD) to purchase so...

Primary endpoint met in COMET-TAIL Phase III trial…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Vir Biotechnology, Inc. (Vir) (Nasdaq: VIR) announced headline data from the randomised, multi-centre, open-label COMET-TAIL Phase...

Two billion doses of AstraZeneca’s COVID-19 vaccin…

AstraZeneca and its partners have released for supply two billion doses of their COVID-19 vaccine to more than 170 countries across every continent on the planet in the l...

Merck and Ridgeback's molnupiravir, an oral COVID-…

Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Ridgeback Biotherapeutics announced that the United Kingdom Medicines and Healthcare products Re...

Johnson & Johnson COVID-19 vaccine named one o…

The editors of Time announced that the Johnson & Johnson COVID-19 vaccine has been selected as one of Time's Best Inventions of 2021. The vaccine, for which Johnson & ...

New target for COVID-19 vaccines identified

Next generation vaccines for COVID-19 should aim to induce an immune response against 'replication proteins', essential for the very earliest stages of the viral cycle, c...

Repurposing a familiar drug for COVID-19

For the past year and a half, the COVID-19 pandemic has continued to engulf the globe, fueled in part by novel variants and the uneven distribution of vaccines. Every day...

Safety concerns raised for neuroblastoma candidate…

St. Jude Children's Research Hospital scientists looking for drugs to improve survival of children with high-risk neuroblastoma found a promising candidate in CX-5461. Th...

Pfizer and BioNTech receive expanded U.S. FDA emer…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced that the U.S. Food and Drug Administration (FDA) has expanded the emergency use authorization (EUA) of a ...

'Dancing molecules' successfully repair severe spi…

Northwestern University researchers have developed a new injectable therapy that harnesses “dancing molecules” to reverse paralysis and repair tissue after severe spinal ...

A target for potential cancer drugs may, in fact, …

In recent years, much scientific effort and funding has focused on developing drugs that target an enzyme with the unwieldy name of Src homology 2-containing protein tyro...