Blocking cellular communication stops SARS-CoV-2

In the transmission of signals within the cell which, for example, stimulate cell growth or trigger metabolic processes, phosphate groups play an important biochemical role. The phosphate groups are often attached to proteins or removed to control activity. In this process, a change in the protein triggers the next one and the signal is transmitted in a signaling cascade. The target is usually the cell nucleus, where genes are switched on or off.

For the first time, biochemists and virologists from Goethe University have now succeeded in documenting the full picture of all the communication pathways in a human cell infected with SARS-CoV-2 and observed what changes the infection triggers. To do so, they analyzed all proteins carrying a phosphate group at a given moment in time - what is known as the phosphoproteome. The result: SARS-CoV-2 evidently uses above all those signaling pathways of the host cell where a growth signal is transmitted into the cell from outside. If these signaling pathways are interrupted, the virus is no longer able to replicate.

Dr. Christian Münch from the Institute of Biochemistry II at Goethe University explains: "The signaling pathways of the growth factors can be blocked precisely at the point where the signal from outside the cell docks onto a signal receiver - a growth factor receptor. There are, however, a number of very effective cancer drugs that interrupt growth factor signaling pathways slightly further down the cascade, through which the signals of different growth factor receptors are blocked. We've tested five of these substances on our cells, and all five led to a complete stop of SARS-CoV-2 replication."

Professor Jindrich Cinatl from the Institute of Medical Virology at University Hospital Frankfurt says: "We conducted our experiments on cultivated cells in the laboratory. This means that the results cannot be transferred to humans without further tests. However, from trials with other infectious viruses we know that viruses often alter signaling pathways in their human host cells and that this is important for virus replication. At the same time, already approved drugs have a gigantic lead in terms of development so that it would be possible - on the basis of our results and just a few more experiments - to start clinical studies very quickly."

Via INNOVECTIS, the researchers have patented their method of interrupting signaling pathways by means of specific inhibitors in order to treat COVID-19. INNOVECTIS was founded in 2000 as a subsidiary of Goethe University and has operated successfully since then as a service provider in the transfer of academic know-how into business practice.

Kevin Klann, Denisa Bojkova, Georg Tascher, Sandra Ciesek, Christian Münch, Jindrich Cinat.
Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication.
Molecular Cell, 2020. doi: 10.1016/j.molcel.2020.08.006

Most Popular Now

Sustained cellular immune dysregulation in individ…

COVID-19, which has killed 1.7 million people worldwide, does not follow a uniform path. Many infected patients remain asymptomatic or have mild symptoms. Others, espe...

New virtual screening strategy identifies existing…

A novel computational drug screening strategy combined with lab experiments suggest that pralatrexate, a chemotherapy medication originally developed to treat lymphoma, c...

An in vitro study shows Pfizer-BioNTech COVID-19 v…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced results from an in vitro study conducted by Pfizer and the University of Texas Medical Branch (UTMB...

European Commission authorizes COVID-19 vaccine Mo…

Moderna, Inc. (Nasdaq: MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, announced that the European Commission has granted a cond...

Serum Institute of India obtains emergency use aut…

AstraZeneca's COVID-19 vaccine has been granted emergency use authorisation in India as well as Argentina, Dominican Republic, El Salvador, Mexico and Morocco for the act...

CureVac and Bayer join forces on COVID-19 vaccine …

Bayer has signed a collaboration and services agreement with CureVac N.V. (Nasdaq: CVAC), a biopharmaceutical company developing a new class of transformative medicines b...

New findings help explain how COVID-19 overpowers …

Seeking to understand why COVID-19 is able to suppress the body's immune response, new research from the USC Leonard Davis School of Gerontology suggests that mitochondri...

Valneva in advanced discussions with European Comm…

Valneva SE, a specialty vaccine company focused on prevention of infectious diseases with significant unmet medical need, announced it is in advanced discussions with the...

China grants conditional market approval for Sinop…

The inactivated COVID-19 vaccine developed by Beijing Institute of Biological Products of Sinopharm CNBG has been granted conditional registration by the NMPA of China, C...

Novavax announces initiation of PREVENT-19 pivotal…

Novavax, Inc. (Nasdaq: NVAX), a late-stage biotechnology company developing next-generation vaccines for serious infectious diseases, today announced initiation of PREVEN...

Scientists identify 'immune cop' that detects SARS…

Scientists at Sanford Burnham Prebys Medical Discovery Institute have identified the sensor in human lungs that detects SARS-CoV-2 and signals that it's time to mount an ...

AstraZeneca's COVID-19 vaccine authorised for emer…

AstraZeneca's COVID-19 vaccine has been approved for emergency supply in the UK, with the first doses being released today so that vaccinations may begin early in the New...