Antibody neutralizes SARS and COVID-19 coronaviruses

An antibody first identified in a blood sample from a patient who recovered from Severe Acute Respiratory Syndrome in 2003 inhibits related coronaviruses, including the cause of COVID-19.

The antibody, called S309, is now on a fast-track development and testing path at Vir Biotechnology in the next step toward possible clinical trials.

Laboratory research findings on the S309 antibody are reported in the May 18 edition of Nature. The title of the paper is: "Cross-neutralization of SARS-CoV and SARS-CoV2 by a human monoclonal antibody".

The senior authors on the paper are David Veesler, assistant professor of biochemistry at the University of Washington School of Medicine, and Davide Corti of Humabs Biomed SA, a subsidiary of Vir.

The lead authors are Dora Pinto and Martina Beltramello of Humabs, as well as Young-Jun Park and Lexi Walls, research scientists in the Veesler lab, which for several years has been studying the structure and function of the infection mechanisms on a variety of coronaviruses.

"We still need to show that this antibody is protective in living systems, which has not yet been done," Veesler said.

"Right now there are no approved tools or licensed therapeutics proven to fight against the coronavirus that causes COVID-19," he added. If the antibody is shown to work against the novel coronavirus in people, it could become part of the pandemic armamentarium.

Veesler said that his lab is not the only one seeking neutralizing antibodies for COVID 19 treatment. What makes this antibody different is that its search did not take place in people who had COVID-19, but in someone who had been infected 17 years ago during a SARS epidemic.

"This is what allowed us to move so fast compared to other groups," Veesler said.

The scientists identified several monoclonal antibodies of interest from memory B cells of the SARS survivor. Memory B cells form following an infectious illness. Their lineage can last, sometimes for life. They usually remember a pathogen, or one similar to it, that the body has ousted in the past, and launch an antibody defense against a re-infection.

Several of the antibodies from the SARS survivor's memory B cells are directed at a protein structure on coronaviruses. This structure is critical to the coronaviruses' ability to recognize a receptor on a cell, fuse to it, and inject their genetic material into the cell. This infectivity machinery is located in the spikes that crown the coronavirus.

The S309 antibody is particularly potent at targeting and disabling the spike protein that promotes the coronavirus entry into cells. It was able to neutralize SARS CoV-2 by engaging with a section of the spike protein nearby the attachment site to the host cell.

Through their cryo-electronmicroscopy studies and binding assays, the researchers learned that the S309 antibody recognizes a binding site on the coronavirus that is conserved across many sarbocoviruses, not just the SARS and COVID-19 viruses. That is probably why this antibody, instead of being single-minded, is able to act against related coronaviruses.

Combining the S309 antibody with other, though weaker, antibodies identified in the recovered SARS patient enhanced the neutralization of the COVID-19 coronavirus.

This multiple antibody cocktail approach might help limit the coronavirus' ability to form mutants capable of escaping a single-ingredient antibody treatment, according to the researchers.

The scientists noted that they hope these initial results pave the way for using the S309 antibody, alone or in a mixture, as a preventive measure for people at high-risk of exposure to the COVID-19 coronavirus or as post-exposure therapy to limit or treat severe illness.

Dora Pinto, Young-Jun Park, Martina Beltramello, Alexandra C Walls, M Alejandra Tortorici, Siro Bianchi, Stefano Jaconi, Katja Culap, Fabrizia Zatta, Anna De Marco, Alessia Peter, Barbara Guarino, Roberto Spreafico, Elisabetta Cameroni, James Brett Case, Rita E Chen, Colin Havenar-Daughton, Gyorgy Snell, Amalio Telenti, Herbert W Virgin, Antonio Lanzavecchia, Michael S Diamond, Katja Fink, David Veesler, Davide Corti.
Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.
Nature, 2020. doi: 10.1038/s41586-020-2349-y

Most Popular Now

Novartis announces plan to initiate clinical trial…

Novartis today announced plans to initiate a Phase III clinical trial to study canakinumab in patients with COVID-19 pneumonia. The CAN-COVID trial will examine the effic...

Gilead announces results from Phase 3 trial of inv…

Gilead Sciences, Inc. (Nasdaq: GILD) announced topline results from the open-label, Phase 3 SIMPLE trial evaluating 5-day and 10-day dosing durations of the investigation...

Sanofi and Regeneron provide update on U.S. Phase …

Sanofi and Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN) today announced the preliminary results from the Phase 2 portion of an ongoing Phase 2/3 trial evaluating Kevzar...

AstraZeneca and Oxford University announce landmar…

AstraZeneca and the University of Oxford announced an agreement for the global development and distribution of the University’s potential recombinant adenovirus vaccine a...

Roche's COVID-19 antibody test receives FDA Emerge…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced that the U.S. Food and Drug Administration (FDA) has issued an Emergency Use Authorization (EUA) (1) for its new Elecsys® Ant...

Pfizer and BioNTech dose first participants in the…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced that the first participants have been dosed in the U.S. in the Phase 1/2 clinical trial for the BNT162 va...

Arthritis drug may improve respiratory function in…

A small study in Greece found that the clinically approved anti-inflammatory drug anakinra, used to treat rheumatoid arthritis, improved respiratory function in patients ...

Frankfurt researchers discover potential targets f…

A team of biochemists and virologists at Goethe University and the Frankfurt University Hospital were able to observe how human cells change upon infection with SARS-CoV-...

Early indicators of vaccine efficacy

Ludwig-Maximilians-Universität (LMU) in Munich researchers have shown that a specific class of immune cells in the blood induced by vaccination is an earlier indicator of...

Vitamin D linked to low virus death rate

A new study has found an association between low average levels of vitamin D and high numbers of COVID-19 cases and mortality rates across 20 European countries. The r...

Loss of smell associated with milder clinical cour…

Following an earlier study that validated the loss of smell and taste as indicators of SARS-CoV-2 infection, researchers at UC San Diego Health report in newly published ...

Can an existing HIV medication slow the spread of …

A team of scientists from St. Michael's Hospital, Sinai Health and Sunnybrook Health Sciences Centre have launched a clinical trial to understand whether an existing drug...