Targeting the cancer microenvironment

The recognition of bacterial infections or foreign substances is mediated and controlled by the human immune system. This innate and adaptive immune system comprises the most important metabolic and cellulare processes to fight against infections and other diseases. Paradoxically, this immune system is also involved in the development of systemic diseases and cancer. Therefore it is of utmost importance to further understand fundamental biochemical processes involved in the cellular reactions of the immune system which can lead directly to novel therapies against systemic diseases and cancer.

The enormeous complexity of the immune system comprises different cell types. Two types, M1- and M2-type macrophages are involved in inflammatory defense mechanisms (M1) but also healing processes (M2). These M2-type macrophages are also known to associate with cancer cells and supporting their growth (Tumor-associated macrophages, TAM´s). The mechanism by which these cell types can differentiate into each other is called the polarization process.

M2 polarization can be targeted by a novel biochemical checkpoint

In a new study published in Cell Reports the research teams of the system biologist and biochemist Wolfram Weckwerth and the immunologist Thomas Weichhart have found a novel biochemical switch involved in the polarization and proliferation of M2 macrophages. This biochemical checkpoint branches from the glycolytic pathway - the major pathway in human metabolism for glucose breakdown - to provide molecular units for rapid cell proliferation and differentiation. If this pathway is inhibited by specific substances the M2 polarization and proliferation is downregulated. This has direct consequences for the understanding of TAM's and the treatment of cancer. „Our hypothesis is that if we inhibit the growth of M2-type macrophages in the microenvironment of cancer cells we could revoke the supportive effect for cancer growth. This biochemical checkpoint which we found in these M2-type macrophages is exactly the point for targeting their growth inhibition," says Wolfram Weckwerth.

The two labs of Thomas Weichhart and Wolfram Weckwerth are now intensively working to study this mechanism in more detail and to develop potential strategies for cancer cell treatment. Central for this project is the Vienna Metabolomics Center which enables the thorough study of these complex metabolic processes of the human immune system and cancer metabolism by combining metabolite profiling and data-driven computational modelling. The Vienna Metabolomics Center was also recently involved in a study for cancer treatment by specific combinations of fasting and drug administration leading to reduced tumor growth.

Jayne Louise Wilson, Thomas Nägele, Monika Linke, Florian Deme, Stephanie D Fritsch, Hannah Katharina Mayr, Zhengnan Cai, Karl Katholnig, Xiaoliang Sun, Lena Fragner, Anne Miller, Arvand Haschemi, Alexandra Popa, Andreas Bergthaler, Markus Hengstschläger, Thomas Weichhart, Wolfram Weckwerth.
Inverse Data-Driven Modeling and MultiomicsAnalysis Reveals Phgdh as a Metabolic Checkpointof Macrophage Polarization and Proliferation.
Cell Reports 30, 1542–1552, February 4, 2020. doi: 10.1016/j.celrep.2020.01.011.

Most Popular Now

Time-restricted eating reshapes gene expression th…

Numerous studies have shown health benefits of time-restricted eating including increase in life span in laboratory studies, making practices like intermittent fasting a ...

Incurable liver disease may prove curable

Research led by Associate Professor Duc Dong, Ph.D., has shown for the first time that the effects of Alagille syndrome, an incurable genetic disorder that affects the li...

Scientists develop a cancer vaccine to simultaneou…

Scientists are harnessing a new way to turn cancer cells into potent, anti-cancer agents. In the latest work from the lab of Khalid Shah, MS, PhD, at Brigham and Women’s ...

AstraZeneca to acquire CinCor Pharma to strengthen…

AstraZeneca has entered into a definitive agreement to acquire CinCor Pharma, Inc. (CinCor), a US-based clinical-stage biopharmaceutical company, focused on developing no...

NextPoint Therapeutics announces $80 million Serie…

NextPoint Therapeutics, a biotechnology company developing a new world of precision immuno-oncology, announced today that it raised $80 million in Series B financing co-l...

COVID-19 vaccines, prior infection reduce transmis…

Vaccination and boosting, especially when recent, helped to limit the spread of COVID-19 in California prisons during the first Omicron wave, according to an analysis by ...

Bayer to accelerate drug discovery with Google Clo…

Bayer AG and Google Cloud announced a collaboration to drive early drug discovery that will apply Google Cloud's Tensor Processing Units (TPUs), which are custom-develope...

Study identifies potential new approach for treati…

Targeting iron metabolism in immune system cells may offer a new approach for treating systemic lupus erythematosus (SLE) - the most common form of the chronic autoimmune...

Nanotechnology may improve gene therapy for blindn…

Using nanotechnology that enabled mRNA-based COVID-19 vaccines, a new approach to gene therapy may improve how physicians treat inherited forms of blindness. A collabo...

Acquisition of Neogene Therapeutics completed

AstraZeneca has completed the acquisition of Neogene Therapeutics Inc. (Neogene), a global clinical-stage biotechnology company pioneering the discovery, development and ...

Modified CRISPR-based enzymes improve the prospect…

Many genetic diseases are caused by diverse mutations spread across an entire gene, and designing genome editing approaches for each patient’s mutation would be impractic...

Pfizer expands 'An Accord for a Healthier World' p…

Pfizer Inc. (NYSE: PFE) announced that it has significantly expanded its commitment to An Accord for a Healthier World to offer the full portfolio of medicines and vaccin...