Targeting the cancer microenvironment

The recognition of bacterial infections or foreign substances is mediated and controlled by the human immune system. This innate and adaptive immune system comprises the most important metabolic and cellulare processes to fight against infections and other diseases. Paradoxically, this immune system is also involved in the development of systemic diseases and cancer. Therefore it is of utmost importance to further understand fundamental biochemical processes involved in the cellular reactions of the immune system which can lead directly to novel therapies against systemic diseases and cancer.

The enormeous complexity of the immune system comprises different cell types. Two types, M1- and M2-type macrophages are involved in inflammatory defense mechanisms (M1) but also healing processes (M2). These M2-type macrophages are also known to associate with cancer cells and supporting their growth (Tumor-associated macrophages, TAM´s). The mechanism by which these cell types can differentiate into each other is called the polarization process.

M2 polarization can be targeted by a novel biochemical checkpoint

In a new study published in Cell Reports the research teams of the system biologist and biochemist Wolfram Weckwerth and the immunologist Thomas Weichhart have found a novel biochemical switch involved in the polarization and proliferation of M2 macrophages. This biochemical checkpoint branches from the glycolytic pathway - the major pathway in human metabolism for glucose breakdown - to provide molecular units for rapid cell proliferation and differentiation. If this pathway is inhibited by specific substances the M2 polarization and proliferation is downregulated. This has direct consequences for the understanding of TAM's and the treatment of cancer. „Our hypothesis is that if we inhibit the growth of M2-type macrophages in the microenvironment of cancer cells we could revoke the supportive effect for cancer growth. This biochemical checkpoint which we found in these M2-type macrophages is exactly the point for targeting their growth inhibition," says Wolfram Weckwerth.

The two labs of Thomas Weichhart and Wolfram Weckwerth are now intensively working to study this mechanism in more detail and to develop potential strategies for cancer cell treatment. Central for this project is the Vienna Metabolomics Center which enables the thorough study of these complex metabolic processes of the human immune system and cancer metabolism by combining metabolite profiling and data-driven computational modelling. The Vienna Metabolomics Center was also recently involved in a study for cancer treatment by specific combinations of fasting and drug administration leading to reduced tumor growth.

Jayne Louise Wilson, Thomas Nägele, Monika Linke, Florian Deme, Stephanie D Fritsch, Hannah Katharina Mayr, Zhengnan Cai, Karl Katholnig, Xiaoliang Sun, Lena Fragner, Anne Miller, Arvand Haschemi, Alexandra Popa, Andreas Bergthaler, Markus Hengstschläger, Thomas Weichhart, Wolfram Weckwerth.
Inverse Data-Driven Modeling and MultiomicsAnalysis Reveals Phgdh as a Metabolic Checkpointof Macrophage Polarization and Proliferation.
Cell Reports 30, 1542–1552, February 4, 2020. doi: 10.1016/j.celrep.2020.01.011.

Most Popular Now

Favipiravir flu drug 'clearly effective' in treati…

According to the multiple news articles the drug favipiravir (sold under the brand name Avigan), developed by Fujifilm Toyama Chemical, had produced encouraging outcomes ...

Understanding how COVID-19 affects children vital …

Though COVID-19 so far appears to be largely sparing children, researchers are cautioning that it is critical to understand how the virus affects kids to model the pandem...

Roche initiates Phase III clinical trial of Actemr…

Roche (SIX: RO, ROG; OTCQX: RHHBY) is working with the Food & Drug Administration (FDA) to initiate a randomised, double-blind, placebo-controlled Phase III clinical tria...

Novartis commits to donate up to 130 million doses…

Novartis announced its commitment to donate up to 130 million doses of generic hydroxychloroquine to support the global COVID-19 pandemic response. Hydroxychloroquine and...

Free EDC software for non-profit COVID-19 related …

Italy-based EDC provider, Nubilaria srl, offers its ACTide EDC pro-bono for European non-profit COVID-19 Coronavirus related studies. The platform is made available for t...

AstraZeneca to donate 9 million face masks to supp…

AstraZeneca is donating nine million face masks to support healthcare workers around the world as they respond to the COVID-19 (novel coronavirus) global pandemic. AstraZ...

Vivli to launch a portal for sharing data from COV…

In a visible sign of data sharing leadership, Vivli, the Center for Clinical Research Data has committed to serving the open science community through the launch of a COV...

CAR macrophages go beyond T cells to fight solid t…

Chimeric antigen receptor (CAR) T cell therapy has been a game-changer for blood cancers but has faced challenges in targeting solid tumors. Now researchers from the Pere...

Singapore modelling study estimates impact of phys…

A new modelling study conducted in a simulated Singapore setting has estimated that a combined approach of physical distancing [2] interventions, comprising quarantine (f...

COVID-19: The immune system can fight back

Melbourne researchers have mapped immune responses from one of Australia's first novel coronavirus (COVID-19) patients, showing the body's ability to fight the virus and ...

New kind of CRISPR technology to target RNA, inclu…

CRISPR-based genetic screens have helped scientists identify genes that are key players in sickle-cell anemia, cancer immunotherapy, lung cancer metastasis, and many othe...

Roche response to COVID-19 pandemic

Roche Group (SIX: RO, ROG; OTCQX: RHHBY), provided an update on the various actions the company is taking to address the COVID-19 pandemic. On March 19, 2020, Roche co...