If cancer were easy, every cell would do it

A new Scientific Reports paper puts an evolutionary twist on a classic question. Instead of asking why we get cancer, Leonardo Oña of Osnabrück University and Michael Lachmann of the Santa Fe Institute use signaling theory to explore how our bodies have evolved to keep us from getting more cancer.

It isn't obvious why, when any cancer arises, it doesn't very quickly learn to take advantage of the body's own signaling mechanisms for quick growth. After all, unlike an infection, cancers can easily use the body's own chemical language. "Any signal that the body uses, an infection has to evolve to make," says Lachmann. "If a thief wants to unlock your house, they have to figure out how to pick the lock on the door. But cancer cells have the keys to your house. How do you protect against that? How do you protect against an intruder who knows everything you know, and has all the tools and keys you have?" Their answer: You make the keys very costly to use.

Oña and Lachmann's evolutionary model reveals two factors in our cellular architecture that thwart cancer: the expense of manufacturing growth factors ("keys") and the range of benefits delivered to cells nearby. Individual cancer cells are kept in check when there's a high energetic cost for creating growth factors that signal cell growth. To understand the evolutionary dynamics in the model, the authors emphasize the importance of thinking about the competition between a mutant cancerous cell and surrounding cells. When a mutant cell arises and puts out a signal for growth, that signal also provides resources to adjacent, non-mutated cells. Thus, when the benefits are distributed to a radius around the signaling cell, the mutant cells have a hard time out-competing their neighbors and can't get established. The cancer loses the ability to give the signal.

The work represents a novel application of evolutionary biology toward a big-picture understanding of cancer. Oña and Lachmann draw from the late biologist Amos Zahavi's handicap principle, which explains how evolutionary systems are stabilized against "cheaters" when dishonest signals are costlier to produce than the benefit they provide. The male peacock's elaborate tail is the classic example of a costly signal - an unhealthy bird would not have the energetic resources to grow an elaborate tail, and thus could not "fake" a signal of their evolutionary fitness. By the handicap principle, a cancer cell would be analogous to the unhealthy peacock that can't afford to signal for attention.

So how do some cancer cells overcome these evolutionary constraints? The authors point out that their model only addresses the scenario of an individual cancer trying to invade a healthy population. Once a cancer has overcome the odds of extinction and reached a certain critical size, other dynamics prevail.

"Many mechanisms seem to have evolved to prevent cancer -- from immune system control, cell death, limits on cell proliferation, to tissue architecture," the authors write. "Our model only studies the reduced chance for invasion."

"Cancer is incredibly complex," Lachmann says, "and our model is relatively simple. Still, we believe it's an important step toward understanding cancer and cancer prevention in evolutionary terms."

Oña L, Lachmann M.
Signalling architectures can prevent cancer evolution.
Sci Rep 10, 674, 2020. doi: 10.1038/s41598-020-57494-w.

Most Popular Now

AstraZeneca takes next steps towards broad and equ…

AstraZeneca has taken the next steps in its commitment to broad and equitable global access to the University of Oxford’s COVID-19 vaccine, following landmark agreements ...

Johnson & Johnson announces acceleration of it…

Johnson & Johnson (NYSE: JNJ) (the Company) today announced that through its Janssen Pharmaceutical Companies (Janssen) it has accelerated the initiation of the Phase 1/2...

Low-cost dexamethasone reduces death by up to one …

In March 2020, the RECOVERY (Randomised Evaluation of COVid-19 thERapY) trial was established as a randomised clinical trial to test a range of potential treatments for C...

Sanofi invests to make France its world class cent…

Sanofi detailed plans on how the Company will make significant investments in France to increase its vaccines research and production capacities, and contribute in respon...

Calquence showed promising clinical improvement in…

Results published in Science Immunology showed that Calquence (acalabrutinib), a Bruton’s tyrosine kinase (BTK) inhibitor, reduced markers of inflammation and improved cl...

Super-potent human antibodies protect against COVI…

A team led by Scripps Research has discovered antibodies in the blood of recovered COVID-19 patients that provide powerful protection against SARS-CoV-2, the coronavirus ...

New consortium EUbOPEN will provide tools to unloc…

Almost twenty years after deciphering the human genome, our understanding of human disease is still far from complete. One of the most powerful and versatile tools to bet...

AstraZeneca to supply Europe with up to 400 millio…

AstraZeneca has reached an agreement with Europe's Inclusive Vaccines Alliance (IVA), spearheaded by Germany, France, Italy and the Netherlands, to supply up to 400 milli...

Up to 45 percent of SARS-CoV-2 infections may be a…

An extraordinary percentage of people infected by the virus behind the ongoing deadly COVID-19 pandemic never show symptoms of the disease, according to the results of a ...

Researchers identify potent antibody cocktail to t…

Researchers at the University of Maryland School of Medicine (UMSOM) evaluated several human antibodies to determine the most potent combination to be mixed in a cocktail...

Gilead announces results from Phase 3 Trial of rem…

Gilead Sciences, Inc. (Nasdaq: GILD) announced topline results from the Phase 3 SIMPLE trial in hospitalized patients with moderate COVID-19 pneumonia. This open-label st...

Mayo finds convalescent plasma safe for diverse pa…

Mayo Clinic researchers and collaborators have found investigational convalescent plasma to be safe following transfusion in a diverse group of 20,000 patients. The findi...