Study overturns century-old rule of pharmacology

One of pharmacology's oldest underlying principles looks set to be overturned. New findings from chemists at the UK's University of Warwick appear to contradict the century-old 'Overton's Rule', which sets out how fast chemicals, such as medicines, can cross cell walls. The findings have major implications for drug development.

Many drugs need to get inside our cells to work effectively. While some molecules gain entry to the cell actively, via special structures embedded in the cell membrane, others gain access passively by permeating the cell's lipid membrane. Overton's Rule concerns molecules that get into cells via passive permeation.

Back in the 1890s, Swiss scientist Ernst Overton developed an equation which predicts how long it should take a given molecule to enter a cell. The resulting rule, which was named after its inventor, states that the easier it is for a chemical to dissolve in a lipid (fat), the faster it will be transported into a cell. One of the most important parameters in Overton's Rule is K, which defines the lipophilicity (oil-liking nature) of the chemical under investigation. The higher the value of K, the faster the rate of diffusion across the cell membrane. In other words, the more lipid-loving a chemical is, the faster it will get into a cell. In the century since Dr Overton first came up with his equation, medicinal scientists have relied on Overton's Rule when designing studies and clinical trials.

In this recent piece of research, the scientists used the latest technology to study in great detail exactly what happens when a molecule enters a cell. They used weak acids for their study; according to Overton's rule, these lipophilic molecules should cross the cell membrane relatively quickly. Their results are published online in the Proceedings of the National Academy of Sciences (PNAS).

What they observed shocked the researchers. Their results flew in the face of accepted wisdom and directly contradicted Overton's Rule. In short, the most lipophilic molecules took the longest to cross the membrane, and the least lipophilic acids were the fastest. The new rule suggests that Overton's Rule needs to be turned on its head; according to these results, the easier it is for a chemical to dissolve in a lipid, the slower it is transported across the cell membrane.

"This was a surprising and exciting finding. Our direct observations appear to totally undermine a key rule that has withstood the test of time for over a century," said lead researcher Professor Patrick Unwin.

"We will now make observations with a range of other chemicals, and with other techniques, to further elucidate the molecular basis for our observations. Text books will have to be rewritten to revise a rule that has been relied on for over a century. Advanced techniques, such as the one we have developed, should give much clearer insight into the action of a wide range of drug molecules, which will be of significant interest to drug developers."

For further information, please visit:

University of Warwick
http://www.warwick.ac.uk

Proceedings of the National Academy of Sciences (PNAS)
http://www.pnas.org

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Primary endpoint met in COMET-TAIL Phase III trial…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Vir Biotechnology, Inc. (Vir) (Nasdaq: VIR) announced headline data from the randomised, multi-centre, open-label COMET-TAIL Phase...

Merck and Ridgeback's molnupiravir, an oral COVID-…

Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Ridgeback Biotherapeutics announced that the United Kingdom Medicines and Healthcare products Re...

Two billion doses of AstraZeneca’s COVID-19 vaccin…

AstraZeneca and its partners have released for supply two billion doses of their COVID-19 vaccine to more than 170 countries across every continent on the planet in the l...

Johnson & Johnson COVID-19 vaccine named one o…

The editors of Time announced that the Johnson & Johnson COVID-19 vaccine has been selected as one of Time's Best Inventions of 2021. The vaccine, for which Johnson & ...

New target for COVID-19 vaccines identified

Next generation vaccines for COVID-19 should aim to induce an immune response against 'replication proteins', essential for the very earliest stages of the viral cycle, c...

Safety concerns raised for neuroblastoma candidate…

St. Jude Children's Research Hospital scientists looking for drugs to improve survival of children with high-risk neuroblastoma found a promising candidate in CX-5461. Th...

Pfizer's novel COVID-19 oral antiviral treatment c…

Pfizer Inc. (NYSE: PFE) today announced its investigational novel COVID-19 oral antiviral candidate,PAXLOVID™, significantly reduced hospitalization and death, based on a...

Repurposing a familiar drug for COVID-19

For the past year and a half, the COVID-19 pandemic has continued to engulf the globe, fueled in part by novel variants and the uneven distribution of vaccines. Every day...

'Dancing molecules' successfully repair severe spi…

Northwestern University researchers have developed a new injectable therapy that harnesses “dancing molecules” to reverse paralysis and repair tissue after severe spinal ...

Researchers reveal a strategy for next-generation …

A study led by the Garvan Institute of Medical Research has revealed a guide to developing COVID-19 vaccines that both prevent the coronavirus from infecting human cells ...

A target for potential cancer drugs may, in fact, …

In recent years, much scientific effort and funding has focused on developing drugs that target an enzyme with the unwieldy name of Src homology 2-containing protein tyro...

A commonly found parasite could treat certain type…

Scientists have discovered that a deadly parasite, known to cause ill health in pregnant women and immunocompromised patients, could potentially be used to treat various ...