The gut may be involved in the development of multiple sclerosis

It is incompletely understood which factors in patients with multiple sclerosis (MS) act as a trigger for the immune system to attack the brain and spinal cord. A potential factor is described by a research team in the journal Proceedings of the National Academy of Sciences, PNAS. The medical researchers used an animal model to show that the protein Smad7 mobilises immune cells in the intestines which, in turn, trigger inflammation in the central nervous system. Analyses of intestinal tissue samples taken from MS patients confirmed the results, which were published online on 4 December 2019.

The study was conducted at the Department of Neurology and the Centre of Neuroimmunology at St. Josef-Hospital, university hospital of Ruhr-Universität Bochum. The Bochum-based group with biologist Dr. Steffen Haupeltshofer and neurologists Professor Simon Faissner and Professor Ingo Kleiter, formerly at the Bochum university hospital, currently at Marianne-Strauß-Klinik in Berg, collaborated with other colleagues from Bochum, Bremen, Mainz, Düsseldorf, Jülich and Rome.

Protein Smad7 activates immune cells in the intestines

The research team initially analysed the signal protein Smad7 in intestinal immune cells in mice, or more precisely: in T-cells. The researchers compared genetically modified mice with a normal and those with a particularly high quantity of Smad7 in T-cells as well as mice without any Smad7 in T-cells. They monitored if the animals developed opticospinal encephalomyelitis - a disease that mimics MS in humans.

The strongest clinical MS-like symptoms occurred in animals with an increased Smad7 level in T-cells. In their intestines, T-cells were more frequently activated, which then migrated into the central nervous system where they triggered inflammation. Moreover, the ratio of protective regulatory T-cells to pathogenic autoreactive T-cells had changed. In mice that didn't have any Smad7 protein, no clinical signs of a MS-like disease occurred.

Results confirmed using tissue samples from patients

In the next step, the researchers analysed tissue samples taken from the intestines of 27 MS patients and compared them with samples taken from 27 healthy individuals. In the patients, they identified changes similar to those in the animal model: the signal protein Smad7 occurred more frequently in intestinal mucosa samples of MS patients than in those of healthy individuals; in addition, an abnormal ratio of regulatory to pathogenic mechanisms was identified in intestinal mucosa samples in patients.

"For other autoimmune diseases such as Crohn's and other inflammatory bowel diseases, researchers are already aware that Smad7 offers a promising therapeutic target; our results suggest that the same is true for multiple sclerosis," says Ingo Kleiter. "Researchers are increasingly exploring intestinal involvement in the development and progression of MS," adds Simon Faissner.

Steffen Haupeltshofer, Teresa Leichsenring, Sarah Berg, Xiomara Pedreiturria, Stephanie C Joachim, Iris Tischoff, Jan-Michel Otte, Tobias Bopp, Massimo C Fantini, Charlotte Esser, Dieter Willbold, Ralf Gold, Simon Faissner, Ingo Kleiter.
Smad7 in intestinal CD4+ T cells determines autoimmunity in a spontaneous model of multiple sclerosis.
Proceedings of the National Academy of Sciences Dec 2019. doi: 10.1073/pnas.1905955116.

Most Popular Now

Novartis research shows technology talent increasi…

Novartis revealed the healthcare and pharma industry has emerged as a desired career destination for tech talent during the COVID-19 pandemic, in the Powerful Pairing res...

GSK COVID-19 vaccine development collaboration wit…

GSK's scientific collaboration with Clover Pharmaceuticals to develop an adjuvanted COVID-19 vaccine has entered into human clinical trials. Clover announced the initiati...

Lilly begins world's first study of a potential CO…

Eli Lilly and Company (NYSE: LLY) announced patients have been dosed in the world's first study of a potential antibody treatment designed to fight COVID-19. This inve...

Sanofi invests to make France its world class cent…

Sanofi detailed plans on how the Company will make significant investments in France to increase its vaccines research and production capacities, and contribute in respon...

Low-cost dexamethasone reduces death by up to one …

In March 2020, the RECOVERY (Randomised Evaluation of COVid-19 thERapY) trial was established as a randomised clinical trial to test a range of potential treatments for C...

Super-potent human antibodies protect against COVI…

A team led by Scripps Research has discovered antibodies in the blood of recovered COVID-19 patients that provide powerful protection against SARS-CoV-2, the coronavirus ...

Sanofi and Translate Bio expand collaboration to d…

Sanofi Pasteur, the vaccines global business unit of Sanofi, and Translate Bio (NASDAQ: TBIO), a clinical-stage messenger RNA (mRNA) therapeutics company, have agreed to ...

AstraZeneca to supply Europe with up to 400 millio…

AstraZeneca has reached an agreement with Europe's Inclusive Vaccines Alliance (IVA), spearheaded by Germany, France, Italy and the Netherlands, to supply up to 400 milli...

Gilead announces results from Phase 3 Trial of rem…

Gilead Sciences, Inc. (Nasdaq: GILD) announced topline results from the Phase 3 SIMPLE trial in hospitalized patients with moderate COVID-19 pneumonia. This open-label st...

Up to 45 percent of SARS-CoV-2 infections may be a…

An extraordinary percentage of people infected by the virus behind the ongoing deadly COVID-19 pandemic never show symptoms of the disease, according to the results of a ...

Bayer supports "The Challenge Initiative…

Today Bayer announced the support of "The Challenge Initiative" ("TCI" hereafter) with a payment of 10 million USD. Hosted at the Johns Hopkins Bloomberg School of Public...

Researchers identify potent antibody cocktail to t…

Researchers at the University of Maryland School of Medicine (UMSOM) evaluated several human antibodies to determine the most potent combination to be mixed in a cocktail...