Protein could offer therapeutic target for pancreatic cancer

A protein that drives growth of pancreatic cancer, and which could be a target for new treatments, has been identified by researchers at the Crick. The study, published in Nature Cell Biology, looked into the most common type of pancreatic cancer, pancreatic ductal adenocarcinoma. This is an aggressive cancer that develops from secretory and tubular cells of the pancreas.

There are no effective therapies to treat this cancer and only 8% of patients survive beyond five years after diagnosis.

The researchers analysed a specific group of tumour cells, called cancer stem cells. Similar to how healthy human stem cells repair tissues and organs, these cells have the ability to start new tumours and they can also differentiate into different types of tumour cells.

As these cells are a driving force behind cancer growth, being able to identify if they are present is an important step towards the development of new treatments. By analysing the gene expression of these cancer stem cells, the team found that a protein, called CD9, is present on their surface both when the tumour is developing and when it is more established. This protein could therefore be used as a marker to help locate these cells.

The study further established that this protein is not just a marker of cancer stem cells, but also promotes their malignant behaviour. The researchers altered the amount of CD9 in tumour cells in mice and found that when the levels of this protein were reduced, smaller tumours formed. Conversely, increasing levels of CD9 made cancer cells more aggressive and able to form large tumours quickly.

These findings were supported by existing clinical data showing that patients whose tumour cells have more CD9 have a poorer clinical prognosis. About 10% of people with this type of cancer have amplified levels of CD9.

"These cells are vital to pancreatic cancer and if even just a few of them survive chemotherapy, the cancer is able to bounce back. We need to find effective ways to remove these cells, and so stop them from fuelling cancer growth. However, we need more experiments to validate the importance of CD9 in human pancreatic cancer," says Victoria Wang, lead author and member of the Adult Stem Cell Laboratory at the Crick.

To understand the mechanism behind how CD9 bolsters cancer, the team looked into the cancer stem cells' metabolism. Their findings showed that CD9 increases the rate cells take up glutamine, an amino acid which helps provide energy for the cancer to grow.

"Now we know this protein is both linked to cancer stem cells and helps cancer growth, this could guide the development of new treatments that are targeted at the protein and so cut off the supply of glutamine to cancer stem cells, effectively starving the cancer," says Axel Behrens, corresponding author and group leader in the Adult Stem Cell Laboratory at the Crick.

Victoria MY Wang, Rute MM Ferreira, Jorge Almagro, Theodore Evan, Nathalie Legrave, May Zaw Thin, David Frith, Joana Carvalho, David J Barry, Ambrosius P Snijders, Eleanor Herbert, Emma L Nye, James I MacRae, Axel Behrens.
CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth.
Nature Cell Biology volume 21, pages 1425-1435(2019). doi: 10.1038/s41556-019-0407-1.

Most Popular Now

73,000 Scientists collaborate over new COVID-19 Da…

More than 73,000 users collaborate on new online platform set up by the European Open Science Cloud Initiative, where scientists share COVID-19 data and accelerate our un...

Antiviral used to treat cat coronavirus also works…

Researchers at the University of Alberta are preparing to launch clinical trials of a drug used to cure a deadly disease caused by a coronavirus in cats that they expect ...

Roche and Regeneron collaborate to significantly i…

Roche (SIX: RO, ROG; OTCQX: RHHBY) and Regeneron (NASDAQ: REGN) announced are joining forces in the fight against COVID-19 to develop, manufacture and distribute REGN-COV...

Search for COVID-19 drugs boosted by SARS discover…

An extensive search and testing of current drugs and drug-like compounds has revealed compounds previously developed to fight SARS might also work against COVID-19. Us...

Pfizer and BioNTech share positive early data on l…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) shared additional Phase 1 safety and immunogenicity data from their ongoing U.S. study of the BNT162 mRNA-based vac...

Phase I clinical trial initiated for monoclonal an…

The first participants have been dosed in a Phase I trial of AZD7442, a combination of two monoclonal antibodies (mAbs) in development for the prevention and treatment of...

Europe's largest initiative launches to accelerate…

CARE (Corona Accelerated R&D in Europe) a new consortium supported by the Innovative Medicines Initiative (IMI) public-private partnership announced its launch to acceler...

Vitamin D deficiency may raise risk of getting COV…

In a retrospective study of patients tested for COVID-19, researchers at the University of Chicago Medicine found an association between vitamin D deficiency and the like...

Blocking cellular communication stops SARS-CoV-2

In the transmission of signals within the cell which, for example, stimulate cell growth or trigger metabolic processes, phosphate groups play an important biochemical ro...

Improving FDA's COVID-19 vaccine authorization and…

On March 28, the Food and Drug Administration (FDA) exercised its Emergency Use Authorization (EUA) authority to allow the use of hydroxychloroquine for the treatment of ...

Steroid found to improve survival of critically il…

A new international study published today has shown that treating critically ill patients with COVID-19 with the steroid hydrocortisone improves their chances of recovery...

Bayer and Informed Data Systems Inc. (One Drop) jo…

Bayer and Informed Data Systems Inc. (One Drop), a US-based digital health company, today announced that they have entered into an agreement to jointly develop digital he...