Attacking metastatic breast cancer with sound

Drugs can be safely delivered to cancerous lymph nodes via the lymphatic system and then released inside the nodes using sound waves. Tohoku University researchers tested the treatment on mice with metastatic breast cancer and published their findings in the journal Scientific Reports.

"We believe that our technique has the potential to be developed into a new treatment for lymph nodes invaded by metastatic tumour cells," says Tetsuya Kodama, the Tohoku University biomedical engineer who led the study.

The treatment involves injecting vesicles carrying anticancer drugs into a pelvic lymph node. The vesicles travel through the lymphatic system to reach lymph nodes in the armpit affected by breast cancer metastases. When high power ultrasound is applied to the armpit, the vesicles rupture, leading to targeted drug release.

Breast cancer is the most common cancer in women and causes the greatest number of cancer-related deaths amongst them. In its advanced stages, cancer cells can break away from the original tumour and travel through the lymphatic system to establish metastases in lymph nodes that can then travel to other parts of the body.

Disease prognosis could be improved if there was a way to safely and effectively treat lymph node metastases. Currently available treatments are highly invasive and can have severe side effects.

Kodama and his colleagues in Japan had previously tested their treatment on mice with a type of breast tumour that produces lymph node metastases with low invasive growth and well-defined borders. For this study, they tried the treatment on the more invasive metastases generated by breast cancer.

The team first used an ultrasound imaging technique to follow the movement of drug-free 'acoustic liposomes', vesicles containing gas bubbles, through the lymphatic system in mice. They were able to confirm that liposomes injected into a pelvic lymph node travelled to an armpit lymph node, where they settled.

They then injected breast cancer cells into the pelvic lymph nodes of another group of mice. The cancer cells quickly reached and invaded the armpit lymph node.

Acoustic liposomes carrying the anticancer drug doxorubicin were then injected into the pelvic lymph node. High-intensity sound waves were applied to the armpit area on the same and third days following the injection to rupture the liposomes and release the drug.

The team demonstrated that the treatment was effective in killing the cancerous tissue using a bioluminescence technique that monitors cancer growth, and by studying excised lymph nodes under a microscope.

Further investigations will be needed to determine the optimal injection rate and volume of the treatment to prevent lymphatic complications.

Kato S, Shirai Y, Sakamoto M, Mori S, Kodama T.
Use of a Lymphatic Drug Delivery System and Sonoporation to Target Malignant Metastatic Breast Cancer Cells Proliferating in the Marginal Sinuses.
Sci Rep 9, 13242 (2019). doi: 10.1038/s41598-019-49386-5.

Most Popular Now

A step closer to cancer precision medicine

Researchers from the Faculty of Medicine and the Institute for Molecular Medicine (FIMM) at the University of Helsinki have developed a computational model, Combined Esse...

Artificial Intelligence algorithm can learn the la…

Artificial Intelligence can be used to predict molecular wave functions and the electronic properties of molecules. This innovative AI method developed by a team of resea...

Amgen completes acquisition of Otezla® (apremilast…

Amgen (NASDAQ:AMGN) today announced the successful completion of its acquisition of worldwide rights to Otezla® (apremilast), the only oral, non-biologic treatment for mo...

Bristol-Myers Squibb completes acquisition of Celg…

Bristol-Myers Squibb Company (NYSE:BMY) has completed its acquisition of Celgene Corporation (NASDAQ:CELG) following the receipt of regulatory approval from all governmen...

Amgen and the Duke Clinical Research Institute ann…

Amgen (NASDAQ:AMGN) in collaboration with the Duke Clinical Research Institute (DCRI) announced plans to initiate the Cardiovascular Multi-dimensional Observational Inves...

Statins not associated with memory or cognition de…

Given consumer concern that statins may be associated with memory or cognitive decline, a new study published today in the Journal of the American College of Cardiology m...

Novartis announces new strategy to provide innovat…

Novartis announced a new strategy to broaden patient reach and availability of its portfolio of medicines in sub-Saharan Africa (SSA), which is home to the largest unders...

New advances in the treatment of advanced lung can…

The University of Barcelona (UB) and Hospital Clínic de Barcelona collaborate with Boehringer Ingelheim Inc. to improve the efficiency of nintedanib, an antiangiogenic an...

FDA grants priority review to Roche’s risdiplam fo…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced that the U.S. Food and Drug Administration (FDA) has accepted the New Drug Application (NDA) and granted Priority Review for ...

A protein tag to study the immune system

Researchers from VIB-UGent Center for Medical Biotechnology, University of Iowa (USA) and other collaborators, developed a novel approach to better understand a basic def...

Bayer and Dewpoint Therapeutics partner to researc…

Bayer and Dewpoint Therapeutics, a biotechnology company with sites in Boston and Dresden, Germany, today announced an option, research and license agreement worth up to ...

Pharmacist-led interventions may help prevent card…

With their expertise in the safe and effective use of medications, pharmacists can help in the management of chronic diseases. A review and analysis published in the Brit...