New strategy to treat Parkinson's disease

Northwestern Medicine scientists have used patient-derived neurons to develop and test a new strategy to treat Parkinson's disease by mitigating the effects of harmful genetic mutations, as detailed in a study published today (Oct. 16) in Science Translational Medicine.

Some experimental treatments for genetic disorders target mutated proteins or enzymes, but this study, led by Dr. Dimitri Krainc, took a different approach. Instead of trying to fix broken enzymes, the scientists amplified healthy ones, an approach that successfully alleviated symptoms of Parkinson's disease (PD) in human brain cells and in mouse models.

"This study highlights wild-type GCase activation as a potential therapeutic target for multiple forms of Parkinson's disease," said Krainc, who is chair of neurology and director of the Center for Neurogenetics at Northwestern University Feinberg School of Medicine

Parkinson's is the second-most common neurodegenerative disorder, predominately affecting neurons in an area of the brain called the substantia nigra. These neurons are responsible for producing dopamine - a chemical messenger used to transmit signals throughout the brain -- and for relaying messages that plan and control body movement.

Mutations in the gene GBA1 represent the most common genetic risk factor for PD, according to the study, and GBA1 codes for an enzyme called glucocerebrosidase (GCase) that is important for neuronal function. PD-associated mutations can disable GBA1 and produce misshapen GCase enzymes, which contribute to an accumulation of toxic proteins in dopamine-producing neurons.

As this neuronal population dies, patients experience symptoms such as tremors and slowness of movement. While some medications can offer relief for these symptoms, there is no treatment that can stop or slow the disease.

According to Krainc, drug development for patients with GBA1-linked Parkinson's has largely focused on stabilizing mutated GCase and limiting its harmful effects. However, these treatments would be effective only in a few types of PD.

"Instead, activating wild-type GCase may be more relevant for multiple forms of PD that exhibit reduced activity of wild-type GCase," Krainc said.

In the current study, scientists developed a new series of chemical activators that stabilized and amplified normal GCase. The activator, a small molecule that binds to GCase, improved PD-related cellular dysfunction in patient derived neurons.

Importantly, these activators worked in several varieties of PD, showing this strategy could work for a wide range of patients, Krainc said.

"Our work points to the potential for modulating wild-type GCase activity and protein levels in both genetic and idiopathic forms of PD and highlights the importance of personalized or precision neurology in development of novel therapies," he said.

A 2017 study led by Krainc and published in Science found that some of the key pathological features of PD were only seen in human neurons and not in mouse models, further emphasizing the value of patient-derived neurons for drug development in Parkinson's disease.

"It will be important to examine human neurons to test any candidate therapeutic interventions that target midbrain dopaminergic neurons in PD," Krainc said.

Lena F Burbulla, Sohee Jeon, Jianbin Zheng, Pingping Song, Richard B Silverman, Dimitri Krainc.
A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson's disease.
Science Translational Medicine, 16 Oct 2019, Vol. 11, Issue 514. doi: 10.1126/scitranslmed.aau6870.

Most Popular Now

AstraZeneca takes next steps towards broad and equ…

AstraZeneca has taken the next steps in its commitment to broad and equitable global access to the University of Oxford’s COVID-19 vaccine, following landmark agreements ...

Johnson & Johnson announces acceleration of it…

Johnson & Johnson (NYSE: JNJ) (the Company) today announced that through its Janssen Pharmaceutical Companies (Janssen) it has accelerated the initiation of the Phase 1/2...

Low-cost dexamethasone reduces death by up to one …

In March 2020, the RECOVERY (Randomised Evaluation of COVid-19 thERapY) trial was established as a randomised clinical trial to test a range of potential treatments for C...

Sanofi invests to make France its world class cent…

Sanofi detailed plans on how the Company will make significant investments in France to increase its vaccines research and production capacities, and contribute in respon...

Calquence showed promising clinical improvement in…

Results published in Science Immunology showed that Calquence (acalabrutinib), a Bruton’s tyrosine kinase (BTK) inhibitor, reduced markers of inflammation and improved cl...

Super-potent human antibodies protect against COVI…

A team led by Scripps Research has discovered antibodies in the blood of recovered COVID-19 patients that provide powerful protection against SARS-CoV-2, the coronavirus ...

New consortium EUbOPEN will provide tools to unloc…

Almost twenty years after deciphering the human genome, our understanding of human disease is still far from complete. One of the most powerful and versatile tools to bet...

AstraZeneca to supply Europe with up to 400 millio…

AstraZeneca has reached an agreement with Europe's Inclusive Vaccines Alliance (IVA), spearheaded by Germany, France, Italy and the Netherlands, to supply up to 400 milli...

Up to 45 percent of SARS-CoV-2 infections may be a…

An extraordinary percentage of people infected by the virus behind the ongoing deadly COVID-19 pandemic never show symptoms of the disease, according to the results of a ...

Researchers identify potent antibody cocktail to t…

Researchers at the University of Maryland School of Medicine (UMSOM) evaluated several human antibodies to determine the most potent combination to be mixed in a cocktail...

Gilead announces results from Phase 3 Trial of rem…

Gilead Sciences, Inc. (Nasdaq: GILD) announced topline results from the Phase 3 SIMPLE trial in hospitalized patients with moderate COVID-19 pneumonia. This open-label st...

Mayo finds convalescent plasma safe for diverse pa…

Mayo Clinic researchers and collaborators have found investigational convalescent plasma to be safe following transfusion in a diverse group of 20,000 patients. The findi...