Alzheimer's disease might be a 'whole body' problem

Alzheimer's disease, the leading cause of dementia, has long been assumed to originate in the brain. But research from the University of British Columbia and Chinese scientists indicates that it could be triggered by breakdowns elsewhere in the body. The findings, published today in Molecular Psychiatry, offer hope that future drug therapies might be able to stop or slow the disease without acting directly on the brain, which is a complex, sensitive and often hard-to-reach target. Instead, such drugs could target the kidney or liver, ridding the blood of a toxic protein before it ever reaches the brain.

The scientists demonstrated this cancer-like mobility through a technique called parabiosis: surgically attaching two specimens together so they share the same blood supply for several months.

UBC Psychiatry Professor Dr. Weihong Song and Neurology Professor Yan-Jiang Wang at Third Military Medical University in Chongqing attached normal mice, which don't naturally develop Alzheimer's disease, to mice modified to carry a mutant human gene that produces high levels of a protein called amyloid-beta. In people with Alzheimer's disease, that protein ultimately forms clumps, or "plaques," that smother brain cells.

Normal mice that had been joined to genetically modified partners for a year "contracted" Alzheimer's disease. Song says the amyloid-beta traveled from the genetically-modified mice to the brains of their normal partners, where it accumulated and began to inflict damage.

Not only did the normal mice develop plaques, but also a pathology similar to "tangles" - twisted protein strands that form inside brain cells, disrupting their function and eventually killing them from the inside-out. Other signs of Alzheimer's-like damage included brain cell degeneration, inflammation and microbleeds. In addition, the ability to transmit electrical signals involved in learning and memory - a sign of a healthy brain - was impaired, even in mice that had been joined for just four months.

Besides the brain, amyloid-beta is produced in blood platelets, blood vessels and muscles, and its precursor protein is found in several other organs. But until these experiments, it was unclear if amyloid-beta from outside the brain could contribute to Alzheimer's disease. This study, Song says, shows it can.

"The blood-brain barrier weakens as we age," says Song, a Canada Research Chair in Alzheimer's Disease and the Jack Brown and Family Professor. "That might allow more amyloid beta to infiltrate the brain, supplementing what is produced by the brain itself and accelerating the deterioration."

Song, head of UBC's Townsend Family Laboratories, envisions a drug that would bind to amyloid-beta throughout the body, tagging it biochemically in such a way that the liver or kidneys could clear it.

"Alzheimer's disease is clearly a disease of the brain, but we need to pay attention to the whole body to understand where it comes from, and how to stop it," he says.

XL Bu, Y Xiang, WS Jin, J Wang, LL Shen, ZL Huang, K Zhang, YH Liu, F Zeng, JH Liu, HL Sun, ZQ Zhuang, SH Chen, XQ Yao, B Giunta, YC Shan, J Tan, XW Chen, ZF Dong, HD Zhou, XF Zhou, W Song, YJ Wang.
Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies.
Molecular Psychiatry. doi: 10.1038/mp.2017.204.

Most Popular Now

SK bioscience and GSK start Phase 3 trial of adjuv…

SK bioscience (SK) and GlaxoSmithKline plc (GSK) today announced the initiation of a Phase 3 clinical study of SK's COVID-19 vaccine candidate, GBP510, in combination wit...

Blood vessels produce growth factor that promotes …

Blood vessels supply tumors with nutrients and, on the other hand, enable cancer cells to spread throughout the body. The settlement of circulating tumor cells in a dista...

No serious health effects linked to mRNA COVID-19 …

Federal and Kaiser Permanente researchers combing the health records of 6.2 million patients found no serious health effects that could be linked to the 2 mRNA COVID-19 v...

First-in-human clinical trial for a vaccine to tre…

The first patients have been enrolled in a phase 1 randomized placebo-controlled clinical trial to study a therapeutic vaccine for opioid use disorder developed by resear...

New study examines 'Achilles heel' of cancer tumou…

Researchers at the University of British Columbia's faculty of medicine and BC Cancer Research Institute have uncovered a weakness in a key enzyme that solid tumour cance...

AI algorithm solves structural biology challenges

Determining the 3D shapes of biological molecules is one of the hardest problems in modern biology and medical discovery. Companies and research institutions often spend ...

A drug costing less than €2 a day helps in the tre…

Metoprolol, a drug widely used to treat cardiovascular disease, is beneficial when administered to COVID-19patients. This is the finding of a study by investigators at th...

Sandoz strengthens pipeline by entering into agree…

Sandoz, a Novartis division, today announced that it has entered into a commercialization agreement with Bio-Thera Solutions, Ltd. for biosimilar bevacizumab (BAT1706). B...

Pfizer and BioNTech submit a variation to EMA with…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced that they submitted a variation to the European Medicines Agency (EMA) requesting to update the Condition...

Rheumatoid arthritis treated with implanted cells …

With a goal of developing rheumatoid arthritis therapies with minimal side effects, researchers at Washington University School of Medicine in St. Louis have genetically ...

One in three Americans had COVID-19 by the end of …

A new study published in the journal Nature estimates that 103 million Americans, or 31 percent of the U.S. population, had been infected with SARS-CoV-2 by the end of 20...

NIH scientists build a cellular blueprint of multi…

Chronic lesions with inflamed rims, or "smoldering" plaques, in the brains of people with multiple sclerosis (MS) have been linked to more aggressive and disabling forms ...