Pathways leading to beta cell division identified, may aid diabetes treatment

Pancreatic beta cells help maintain normal blood glucose levels by producing the hormone insulin - the master regulator of energy (glucose). Impairment and the loss of beta cells interrupts insulin production, leading to type 1 and 2 diabetes. Using single-cell RNA sequencing, researchers at University of California San Diego School of Medicine have, for the first time, mapped out pathways that regulate beta cell growth that could be exploited to trick them to regenerate.

The findings are published in the May 2 issue of the journal Cell Metabolism.

"If we can find a drug that makes beta cells grow, it could improve blood sugar levels in people with diabetes," said Maike Sander, MD, professor in the Department of Pediatrics and Cellular and Molecular Medicine at UC San Diego School of Medicine. "These people often have residual beta cells but not enough to maintain normal blood glucose levels."

The body generates beta cells in utero and they continue to regenerate after birth, but as people age, cell regeneration diminishes. The predominant way to grow new beta cells is through cell division, but beta cells capable of dividing are rare, compromising less than 1 percent of all beta cells. Scientists have been investigating molecular pathways that govern beta cell growth in hopes of finding new therapies that would help people regain blood glucose control after the onset of diabetes.

In their study, Sander's team identified the pathways that are active when beta cells divide providing insight into possible drug targets. Using single-cell RNA sequencing, the team was able to profile molecular features and metabolic activity of individual beta cells to determine how dividing beta cells differ from non-dividing cells.

"No one has been able to do this analysis because the 1 percent or less of beta cells that are dividing are masked by the 99 percent of beta cells that are not dividing," said Sander. "This in-depth characterization of individual beta cells in different proliferative states was enabled by newer technology. It provides a better picture of what sends beta cells into cell division and clues we can use to try to develop drugs to stimulate certain pathways."

Whether stimulating beta cells to grow will result in therapeutic interventions for diabetes is still to be seen, but this new information opens the door to find out, said Sander.

Chun Zeng, Francesca Mulas, Yinghui Sui, Tiffany Guan, Nathanael Miller, Yuliang Tan, Fenfen Liu, Wen Jin, Andrea C. Carrano, Mark O. Huising, Orian S. Shirihai, Gene W. Yeo, Maike Sander.
Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation.
Cell Metabolism, doi: 10.1016/j.cmet.2017.04.014.

Most Popular Now

Therapy using dual immune system cells effectively…

A newly developed immunotherapy that simultaneously uses modified immune-fighting cells to home in on and attack two antigens, or foreign substances, on cancer cells was ...

Cleveland Clinic study suggests steroid nasal spra…

A recent Cleveland Clinic study found that patients who regularly use steroid nasal sprays are less likely to develop severe COVID-19-related disease, including a 20 to 2...

How to develop new drugs based on merged datasets

Polymorphs are molecules that have different molecular packing arrangements despite identical chemical compositions. In a recent paper, researchers at GlaxoSmithKline (GS...

New drug combination effective against SARS-CoV-2 …

More countries with greater resources are opening up for a more normal life. But COVID-19 and the SARS-CoV-2 virus are still a significant threat in large parts of the wo...

Sanofi to focus its COVID-19 development efforts o…

Recent positive interim results of Sanofi's mRNA-based COVID-19 vaccine candidate Phase 1/2 study confirm the company's platform robust capabilities and strategy in mRNA...

Discovery of mechanics of drug targets for COVID-1…

A team of international researchers, including McGill Professor Stéphane Laporte, have discovered the working mechanism of potential drug targets for various diseases suc...

Phase II/III trial shows Ronapreve™ (casirivimab a…

Roche (SIX: RO, ROG; OTCQX: RHHBY) today confirmed positive data from the phase II/III 2066 study, investigating Ronapreve™ (casirivimab and imdevimab) in patients hospit...

Pfizer and BioNTech receive first U.S. FDA Emergen…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced that the U.S. Food and Drug Administration (FDA) has authorized for emergency use a booster dose of the P...

AZD7442 request for Emergency Use Authorization fo…

AstraZeneca has submitted a request to the US Food and Drug Administration (FDA) for an Emergency Use Authorization (EUA) for AZD7442, its long-acting antibody (LAAB) com...

Pfizer and BioNTech receive CHMP positive opinion …

Pfizer Inc. (NYSE: PFE, "Pfizer") and BioNTech SE (Nasdaq: BNTX, "BioNTech") today announced that the Committee for Medicinal Products for Human Use (CHMP) of the Europea...

Boehringer Ingelheim acquires Abexxa Biologics to …

Boehringer Ingelheim announced the acquisition of Abexxa Biologics Inc., a biopharmaceutical company taking a new approach in the fields of immuno-oncology and oncology r...

GSK welcomes WHO recommendation for broad roll-out…

GlaxoSmithKline (GSK) plc welcomes and applauds the WHO recommendation for the broader deployment of GSK's RTS,S malaria vaccine to reduce childhood illness and deaths fr...