Scientists find new link between diabetes and Alzheimer's

Researchers have uncovered a unique connection between diabetes and Alzheimer's disease, providing further evidence that a disease that robs people of their memories may be affected by elevated blood sugar, according to scientists at Washington University School of Medicine in St. Louis.

While many earlier studies have pointed to diabetes as a possible contributor to Alzheimer's, the new study - in mice - shows that elevated glucose in the blood can rapidly increase levels of amyloid beta, a key component of brain plaques in Alzheimer's patients. The buildup of plaques is thought to be an early driver of the complex set of changes that Alzheimer's causes in the brain.

The research is published May 4 in The Journal of Clinical Investigation.

"Our results suggest that diabetes, or other conditions that make it hard to control blood sugar levels, can have harmful effects on brain function and exacerbate neurological conditions such as Alzheimer's disease," said lead author Shannon Macauley, PhD, a postdoctoral research scholar. "The link we've discovered could lead us to future treatment targets that reduce these effects."

People with diabetes can't control the levels of glucose in their blood, which can spike after meals. Instead, many patients rely on insulin or other medications to keep blood sugar levels in check.

To understand how elevated blood sugar might affect Alzheimer's disease risk, the researchers infused glucose into the bloodstreams of mice bred to develop an Alzheimer's-like condition.

In young mice without amyloid plaques in their brains, doubling glucose levels in the blood increased amyloid beta levels in the brain by 20 percent.

When the scientists repeated the experiment in older mice that already had developed brain plaques, amyloid beta levels rose by 40 percent.

Looking more closely, the researchers showed that spikes in blood glucose increased the activity of neurons in the brain, which promoted production of amyloid beta. One way the firing of such neurons is influenced is through openings called KATP channels on the surface of brain cells. In the brain, elevated glucose causes these channels to close, which excites the brain cells, making them more likely to fire.

Normal firing is how a brain cell encodes and transmits information. But excessive firing in particular parts of the brain can increase amyloid beta production, which ultimately can lead to more amyloid plaques and foster the development of Alzheimer's disease.

To show that KATP channels are responsible for the changes in amyloid beta in the brain when blood sugar is elevated, the scientists gave the mice diazoxide, a glucose-elevating drug commonly used to treat low blood sugar. To bypass the blood-brain barrier, the drug was injected directly into the brain.

The drug forced the KATP channels to stay open even as glucose levels rose. Production of amyloid beta remained constant, contrary to what the researchers typically observed during a spike in blood sugar, providing evidence that the KATP channels directly link glucose, neuronal activity and amyloid beta levels.

Macauley and her colleagues in the laboratory of David M. Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology, are using diabetes drugs in mice with conditions similar to Alzheimer's to further explore this connection.

"Given that KATP channels are the way by which the pancreas secretes insulin in response to high blood sugar levels, it is interesting that we see a link between the activity of these channels in the brain and amyloid beta production," Macauley said. "This observation opens up a new avenue of exploration for how Alzheimer's disease develops in the brain as well as offers a new therapeutic target for the treatment of this devastating neurologic disorder."

The researchers also are investigating how changes caused by increased glucose levels affect the ability of brain regions to network with each other and complete cognitive tasks.

The research was supported by the National Institutes of Health (NIH), grants F32 NS080320, P01 NS080675; the National Science Foundation (NSF), grant DGE-1143954; and the JPB Foundation.

Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, Mahan TE, Sutphen CL, Holtzman DM. Hyperglycemia modulates extracellular amyloid beta concentrations and neuronal activity in vivo. The Journal of Clinical Investigation, online May 4, 2015.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Most Popular Now

AstraZeneca enters license agreement with KYM Bios…

AstraZeneca and KYM Biosciences Inc.* have entered into a global exclusive licence agreement for CMG901, a potential first-in-class antibody drug conjugate (ADC) targetin...

Pfizer receives positive FDA Advisory Committee vo…

Pfizer Inc. (NYSE: PFE) announced that the U.S. Food and Drug Administration's (FDA) Vaccines and Related Biological Products Advisory Committee (VRBPAC) voted that avail...

First nasal monoclonal antibody treatment for COVI…

A pilot trial by investigators from Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, tested the nasal administration of the ...

US FDA Advisory Committee votes to support effecti…

GSK plc (LSE/NYSE: GSK) announced that the US Food and Drug Administration (FDA) Vaccines and Related Biological Products Advisory Committee (VRBPAC) voted that the avail...

"Semantic similarity" leads to novel dru…

The words that researchers use to describe their results can be harnessed to discover potential new treatments for Parkinson's disease, according to a new study published...

Tumour cells' response to chemotherapy is driven b…

Cancer cells have an innate randomness in their ability to respond to chemotherapy, which is another tool in their arsenal of resisting treatment, new research led by the...

Engineered bacteria find tumors, then alert the au…

Combining discoveries in cancer immunology with sophisticated genetic engineering, Columbia University researchers have created a sort of "bacterial suicide squad" that ...

Nanosatellite shows the way to RNA medicine of the…

The RNA molecule is commonly recognized as messenger between DNA and protein, but it can also be folded into intricate molecular machines. An example of a naturally occur...

Gene and cell therapies to combat pancreatic cance…

Pancreatic cancer is an incurable form of cancer, and gene therapies are currently in clinical testing to treat this deadly disease. A comprehensive review of the gene an...

Digital twin opens way to effective treatment of i…

Inflammatory diseases like rheumatoid arthritis have complex disease mechanisms that can differ from patient to patient with the same diagnosis. This means that currently...

Pfizer's ZAVZPRET™ (zavegepant) migraine nasal spr…

Pfizer Inc. (NYSE: PFE) today announced the U.S. Food and Drug Administration (FDA) has approved ZAVZPRET™ (zavegepant), the first and only calcitonin gene-related peptid...

AI conjures proteins that speed up chemical reacti…

For the first time, scientists have used machine learning to create brand-new enzymes, which are proteins that accelerate chemical reactions. This is an important step in...