Drug shows promise for effectively treating metabolic syndrome

University of Utah researchers have discovered that an enzyme involved in intracellular signaling plays a crucial role in developing metabolic syndrome, a finding that has a U of U spinoff company developing a drug to potentially treat the condition. The researchers, led by Jared Rutter, Ph.D., professor of biochemistry, hope to begin human clinical trials of a drug in the next couple of years.

"The approved drug therapies do not treat or prevent this condition in most people," says Rutter, senior author of a study describing the research published July 3, 2014, in Cell Reports. "But given the results of our research with mouse and rat models, we are hopeful that metabolic syndrome can be effectively treated with drug therapy someday soon."

Metabolic syndrome, a group of conditions that increases the risk for developing heart disease, diabetes and stroke, is estimated to affect up to 25 percent of adults. Public health officials believe metabolic syndrome has reached epidemic proportions in the United States and elsewhere.

Metabolic syndrome includes disorders such as high blood pressure, high blood sugar levels, abnormal cholesterol readings, and obesity. One of the prominent features of the syndrome is the excessive production and storage of fatty acids and triglycerides.

In research with rodents, Rutter, doctoral student and first author on the Cell Reports study Xiaoying Wu, and Allen Nickols of BioEnergenix, a company Rutter co-founded in 2009, discovered that an enzyme known as PASK stimulates the overproduction of fatty acids and triglycerides. PASK works by chemically modifying other proteins in order to alter their specific functions. One of the proteins it modifies is SREBP-1c, which functions as the master regulator of all of the enzymes that make fat.

Using a drug candidate being developed by the University of Utah spinoff company BioEnergenix, the researchers prevented PASK from modifying SREBP-1c. This, in turn, prevented SREBP-1c from increasing the production of enzymes that make fat, resulting in a drop in the levels of fatty acids and triglycerides in mouse and rat livers. Insulin resistance and diabetes were also partially reversed in diabetes-prone animals.

"We hope that this is an example where science leads us not only to a better understanding of how the body works, but also to the discovery of approaches that we can use to treat human disease," Rutter says.

Researchers don't know what causes fatty acids and triglycerides to be overproduced, and that will be a focus of Rutter's ongoing research as well as trying to understand how PASK activates SREBP-1c.

This study is a prime example of a public/private partnership to advance research and health care, a model becoming more common in medical and other scientific research. In this case, a U of U spinoff company is using a University of Utah-developed technology to improve the knowledge and clinical treatment of an issue with a major impact on U.S. health. To address this health issue, the University of Utah recently established the Center for Diabetes and Metabolism, which pairs researchers and clinicians who work side by side to develop treatment and prevention options. Rutter serves as co-director of this center.

The University of Utah Diabetes and Metabolism Center (DMC) brings together an interdisciplinary team of clinicians, scientists and educators to discover the root causes of diabetes and diabetic complications, to translate that knowledge into treatments and cures, to provide seamless head-to-toe diabetes care, and to prevent diabetes in those at risk. The DMC was launched as a University of Utah Health Sciences strategic research initiative in 2014.

Most Popular Now

Pfizer to provide U.S. government with 10 million …

Pfizer Inc. (NYSE: PFE) today announced an agreement with the U.S. government to supply 10 million treatment courses of its investigational COVID-19 oral antiviral candid...

GSK and Vir Biotechnology announce United States g…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Vir Biotechnology, Inc. (Nasdaq: VIR) announced US government contracts totalling approximately $1 billion[1] (USD) to purchase so...

Primary endpoint met in COMET-TAIL Phase III trial…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Vir Biotechnology, Inc. (Vir) (Nasdaq: VIR) announced headline data from the randomised, multi-centre, open-label COMET-TAIL Phase...

Two billion doses of AstraZeneca’s COVID-19 vaccin…

AstraZeneca and its partners have released for supply two billion doses of their COVID-19 vaccine to more than 170 countries across every continent on the planet in the l...

Merck and Ridgeback's molnupiravir, an oral COVID-…

Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Ridgeback Biotherapeutics announced that the United Kingdom Medicines and Healthcare products Re...

Johnson & Johnson COVID-19 vaccine named one o…

The editors of Time announced that the Johnson & Johnson COVID-19 vaccine has been selected as one of Time's Best Inventions of 2021. The vaccine, for which Johnson & ...

New target for COVID-19 vaccines identified

Next generation vaccines for COVID-19 should aim to induce an immune response against 'replication proteins', essential for the very earliest stages of the viral cycle, c...

Repurposing a familiar drug for COVID-19

For the past year and a half, the COVID-19 pandemic has continued to engulf the globe, fueled in part by novel variants and the uneven distribution of vaccines. Every day...

Safety concerns raised for neuroblastoma candidate…

St. Jude Children's Research Hospital scientists looking for drugs to improve survival of children with high-risk neuroblastoma found a promising candidate in CX-5461. Th...

Pfizer and BioNTech receive expanded U.S. FDA emer…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced that the U.S. Food and Drug Administration (FDA) has expanded the emergency use authorization (EUA) of a ...

'Dancing molecules' successfully repair severe spi…

Northwestern University researchers have developed a new injectable therapy that harnesses “dancing molecules” to reverse paralysis and repair tissue after severe spinal ...

A target for potential cancer drugs may, in fact, …

In recent years, much scientific effort and funding has focused on developing drugs that target an enzyme with the unwieldy name of Src homology 2-containing protein tyro...