Scientists find new way to mobilize immune system against viruses

University of British Columbia scientists have uncovered an intricate chain reaction in the body's immune system and have used the knowledge to develop a new treatment against harmful viruses. Viral pandemics, such as the coronavirus that caused the deadly SARS outbreak in 2002, have caused hundreds of deaths in Canada, yet effective anti-viral drugs are rare.

A key element to this natural immune response is an antiviral protein in the blood called Interferon alpha. Like soldiers, Interferon alpha is quickly deployed by the body to fight viruses and removed just as quickly to restore equilibrium.

As described in the current issue of the prestigious journal Nature Medicine, a team led by Overall from UBC's Department of Oral Biological and Medical Sciences and Bruce McManus from UBC's Department of Pathology and Laboratory Medicine has discovered that an enzyme called MMP12 serves double-duty in the deployment of the critical antiviral protein: it first enters the infected cell to activate Interferon alpha and then sends it outside the cell membrane to fight viruses. After the job of Interferon alpha is done, MMP12 dissolves the protein during the healing process.

Overall has developed a new antiviral drug that blocks MMP12 from dissolving Interferon alpha outside the cell, giving the immune system an added boost by keeping levels of the protein high in the bloodstream. The drug cannot penetrate cell membranes, making it unable to interfere with the beneficial work inside the cell. The drug has been shown to effectively treat viral infections in mice models and holds promise as a new broad-spectrum antiviral treatment.

"Because the drug isn't virus-strain specific and boosts the body's own immune response to fight infections, it could be effective for even emergent, unknown viruses and eliminate the lag time required to first identify and sequence the virus genetic material before we can treat it," says Overall.

A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity.
David J Marchant, Caroline L Bellac, Theo J Moraes, Samuel J Wadsworth, Antoine Dufour, Georgina S Butler, Leanne M Bilawchuk, Reid G Hendry, A Gordon Robertson, Caroline T Cheung, Julie Ng, Lisa Ang, Zongshu Luo, Karl Heilbron, Michael J Norris, Wenming Duan, Taylor Bucyk, Andrei Karpov, Laurent Devel, Dimitris Georgiadis, Richard G Hegele, Honglin Luo, David J Granville, Vincent Dive, Bruce M McManus & Christopher M Overall.
Nature Medicine (2014) doi:10.1038/nm.3508

Most Popular Now

AstraZeneca enters license agreement with KYM Bios…

AstraZeneca and KYM Biosciences Inc.* have entered into a global exclusive licence agreement for CMG901, a potential first-in-class antibody drug conjugate (ADC) targetin...

Pfizer receives positive FDA Advisory Committee vo…

Pfizer Inc. (NYSE: PFE) announced that the U.S. Food and Drug Administration's (FDA) Vaccines and Related Biological Products Advisory Committee (VRBPAC) voted that avail...

First nasal monoclonal antibody treatment for COVI…

A pilot trial by investigators from Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, tested the nasal administration of the ...

US FDA Advisory Committee votes to support effecti…

GSK plc (LSE/NYSE: GSK) announced that the US Food and Drug Administration (FDA) Vaccines and Related Biological Products Advisory Committee (VRBPAC) voted that the avail...

"Semantic similarity" leads to novel dru…

The words that researchers use to describe their results can be harnessed to discover potential new treatments for Parkinson's disease, according to a new study published...

Tumour cells' response to chemotherapy is driven b…

Cancer cells have an innate randomness in their ability to respond to chemotherapy, which is another tool in their arsenal of resisting treatment, new research led by the...

Engineered bacteria find tumors, then alert the au…

Combining discoveries in cancer immunology with sophisticated genetic engineering, Columbia University researchers have created a sort of "bacterial suicide squad" that ...

Nanosatellite shows the way to RNA medicine of the…

The RNA molecule is commonly recognized as messenger between DNA and protein, but it can also be folded into intricate molecular machines. An example of a naturally occur...

Gene and cell therapies to combat pancreatic cance…

Pancreatic cancer is an incurable form of cancer, and gene therapies are currently in clinical testing to treat this deadly disease. A comprehensive review of the gene an...

Digital twin opens way to effective treatment of i…

Inflammatory diseases like rheumatoid arthritis have complex disease mechanisms that can differ from patient to patient with the same diagnosis. This means that currently...

Pfizer's ZAVZPRET™ (zavegepant) migraine nasal spr…

Pfizer Inc. (NYSE: PFE) today announced the U.S. Food and Drug Administration (FDA) has approved ZAVZPRET™ (zavegepant), the first and only calcitonin gene-related peptid...

AI conjures proteins that speed up chemical reacti…

For the first time, scientists have used machine learning to create brand-new enzymes, which are proteins that accelerate chemical reactions. This is an important step in...