Thioridazine, successfully kills cancer stem cells in the human

A team of scientists at McMaster University has discovered a drug, thioridazine, successfully kills cancer stem cells in the human while avoiding the toxic side-effects of conventional cancer treatments.

"The unusual aspect of our finding is the way this human-ready drug actually kills cancer stem cells; by changing them into cells that are non-cancerous," said Mick Bhatia, the principal investigator for the study and scientific director of McMaster's Stem Cell and Cancer Research Institute in the Michael G. DeGroote School of Medicine.

Unlike chemotherapy and radiation, thioridazine appears to have no effect on normal stem cells.

The research, published today in the science journal CELL, holds the promise of a new strategy and discovery pipeline for the development of anticancer drugs in the treatment of various cancers. The research team has identified another dozen drugs that have good potential for the same response.

For 15 years, some researchers have believed stem cells are the source of many cancers. In 1997, Canadian researchers first identified cancer stem cells in certain types of leukemia. Cancer stem cells have since been identified in blood, breast, brain, lung, gastrointestinal, prostate and ovarian cancer.

To test more than a dozen different compounds, McMaster researchers pioneered a fully automated robotic system to identify several drugs, including thioridazine.

"Now we can test thousands of compounds, eventually defining a candidate drug that has little effect on normal stem cells but kills the cells that start the tumor," said Bhatia.

The next step is to test thioridazine in clinical trials, focusing on patients with acute myeloid leukemia whose disease has relapsed after chemotherapy. Bhatia wants to find out if the drug can put their cancer into remission, and by targeting the root of the cancer (cancer stem cells) prevent the cancer from coming back. Researchers at McMaster have already designed how these trials would be done.

Bhatia's team found thioridazine works through the dopamine receptor on the surface of the cancer cells in both leukemia and breast cancer patients. This means it may be possible to use it as a biomarker that would allow early detection and treatment of breast cancer and early signs of leukemia progression, he said.

The research team's next step is to investigate the effectiveness of the drug in other types of cancer. In addition, the team will explore several drugs identified along with thioridazine. In the future, thousands of other compounds will be analyzed with McMaster robotic stem cell screening system in partnership with collaborations that include academic groups as well as industry.

"The goal for all of the partners is the same – to find unique drugs to change the way we tackle and treat cancer," he said.

The research was supported by grants from the Canadian Institute of Health Research (CIHR), the Canadian Cancer Society Research Institute (CCSRI) and the Ontario Ministry of Economic Development and Innovation (MEDI)'s Ontario Consortium of Regenerating inducing Therapeutics (OCRiT).

"This large scale research endeavor would have been impossible without the active support and vision of the Canadian and Ontario governments along with private donors," said Bhatia.

Most Popular Now

BioNTech's statement on patent infringement lawsui…

BioNTech SE (Nasdaq: BNTX, "BioNTech") published an official statment: "BioNTech is aware of reports that Moderna has sued Pfizer and BioNTech, alleging that COMIRNATY® i...

Xenpozyme™ (olipudase alfa-rpcp) approved by FDA a…

The U.S. Food and Drug Administration (FDA) has approved Xenpozyme™ (olipudase alfa-rpcp) for the treatment of non-central nervous system (non-CNS) manifestations of acid...

FDA grants Breakthrough Therapy Designation to Pfi…

Pfizer Inc. (NYSE:PFE) today announced that its investigational Group B Streptococcus (GBS) vaccine candidate, GBS6 or PF-06760805, received Breakthrough Therapy Designat...

Malaria booster vaccine shows durable high efficac…

Researchers from the University of Oxford and their partners have today reported new findings from their Phase 2b trial following the administration of a booster dose of ...

Research reveals widespread use of ineffective COV…

Monoclonal antibodies are laboratory-designed treatments tailor-made to fight specific infections. In early 2021, the U.S. Food & Drug Administration issued emergency use...

Efficacy, cash and more will increase booster shot…

The more effective the COVID-19 booster, the more likely people are to get it, according to new Cornell research. And they are more likely to accept the booster shot with...

Strict COVID lockdowns in France improved cardiova…

A new paper in European Heart Journal - Digital Health, published by Oxford University Press, indicates that social-distancing measures like total lockdown have a measura...

U.S. clinical trial evaluating antiviral for monke…

A Phase 3 clinical trial evaluating the antiviral tecovirimat, also known as TPOXX, is now enrolling adults and children with monkeypox infection in the United States. St...

Stem cell-gene therapy shows promise in ALS safety…

Cedars-Sinai investigators have developed an investigational therapy using support cells and a protective protein that can be delivered past the blood-brain barrier. This...

Novartis invests in early technical development ca…

Novartis today announced it is investing in next-generation biotherapeutics with the creation of a fully integrated, dedicated USD 300m scientific environment that will b...

Drug turns cancer gene into "eat me" fla…

Tumor cells are notoriously good at evading the human immune system; they put up physical walls, wear disguises and handcuff the immune system with molecular tricks. Now...

Mucosal antibodies in the airways protect against …

High levels of mucosal antibodies in the airways reduce the risk of being infected by omicron, but many do not receive detectable antibodies in the airways despite three ...