Video games lead to new paths to treat cancer

In a research lab at Wake Forest University, biophysicist and computer scientist Samuel Cho uses graphics processing units (GPUs), the technology that makes videogame images so realistic, to simulate the inner workings of human cells.

"If it wasn't for gamers who kept buying these GPUs, the prices wouldn't have dropped, and we couldn't have used them for science," Cho says.

Now he can see exactly how the cells live, divide and die.

And that, Cho says, opens up possibilities for new targets for tumor-killing drugs.

Cho's most recent computer simulation, of a critical RNA molecule that is a component of the human telomerase enzyme, for the first time shows hidden states in the folding and unfolding of this molecule, giving scientists a far more accurate view of how it functions. The results of his research appear in the Journal of the American Chemical Society. Cho worked with colleagues from the University of Maryland and Zhejiang University in China for this study.

The human telomerase enzyme is found only in cancerous cells. It adds tiny molecules called telomeres to the ends of DNA strands when cells divide – essentially preventing cells from dying.

"The cell keeps reproducing over and over, and that's the very definition of cancer," Cho says. "By knowing how telomerase folds and functions, we provide a new area for researching cancer treatments."

A new drug would stop the human telomerase enzyme from adding onto the DNA, so the tumor cell dies.

Cho, an assistant professor of physics and computer science, has turned his attention to videogaming technology and the bacterial ribosome – a molecular system 200 times larger than the human telomerase enzyme RNA molecule. His research group has begun to use graphics cards called GPUs to perform these cell simulations, which is much faster than using standard computing.

"We have hijacked this technology to perform simulations very, very quickly on much larger biomolecular systems," Cho says.

Without the GPUs, Cho estimated it would have taken him more than 40 years to program that simulation.

Now, it will take him a few months.

About Wake Forest University
Wake Forest University combines the best traditions of a small liberal arts college with the resources of a large research university. Founded in 1834, the school is located in Winston-Salem, N.C. The University's graduate school of arts and sciences, divinity school, and nationally ranked schools of law, medicine and business enrich our intellectual environment.

Most Popular Now

AstraZeneca to acquire CinCor Pharma to strengthen…

AstraZeneca has entered into a definitive agreement to acquire CinCor Pharma, Inc. (CinCor), a US-based clinical-stage biopharmaceutical company, focused on developing no...

NextPoint Therapeutics announces $80 million Serie…

NextPoint Therapeutics, a biotechnology company developing a new world of precision immuno-oncology, announced today that it raised $80 million in Series B financing co-l...

Time-restricted eating reshapes gene expression th…

Numerous studies have shown health benefits of time-restricted eating including increase in life span in laboratory studies, making practices like intermittent fasting a ...

Incurable liver disease may prove curable

Research led by Associate Professor Duc Dong, Ph.D., has shown for the first time that the effects of Alagille syndrome, an incurable genetic disorder that affects the li...

Scientists develop a cancer vaccine to simultaneou…

Scientists are harnessing a new way to turn cancer cells into potent, anti-cancer agents. In the latest work from the lab of Khalid Shah, MS, PhD, at Brigham and Women’s ...

Bayer to accelerate drug discovery with Google Clo…

Bayer AG and Google Cloud announced a collaboration to drive early drug discovery that will apply Google Cloud's Tensor Processing Units (TPUs), which are custom-develope...

COVID-19 vaccines, prior infection reduce transmis…

Vaccination and boosting, especially when recent, helped to limit the spread of COVID-19 in California prisons during the first Omicron wave, according to an analysis by ...

Study identifies potential new approach for treati…

Targeting iron metabolism in immune system cells may offer a new approach for treating systemic lupus erythematosus (SLE) - the most common form of the chronic autoimmune...

Nanotechnology may improve gene therapy for blindn…

Using nanotechnology that enabled mRNA-based COVID-19 vaccines, a new approach to gene therapy may improve how physicians treat inherited forms of blindness. A collabo...

Acquisition of Neogene Therapeutics completed

AstraZeneca has completed the acquisition of Neogene Therapeutics Inc. (Neogene), a global clinical-stage biotechnology company pioneering the discovery, development and ...

Modified CRISPR-based enzymes improve the prospect…

Many genetic diseases are caused by diverse mutations spread across an entire gene, and designing genome editing approaches for each patient’s mutation would be impractic...

Pfizer expands 'An Accord for a Healthier World' p…

Pfizer Inc. (NYSE: PFE) announced that it has significantly expanded its commitment to An Accord for a Healthier World to offer the full portfolio of medicines and vaccin...