New drug screening identifies chemical agents with potent anti-cancer activity

Drugs already approved for clinical use across a variety of therapeutic categories can be screened to identify effective agents for thyroid cancer according to a recent study accepted for publication in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM). These findings could rapidly be implemented into a clinical trial to test how effective the treatment would be.

The discovery of new chemical agents capable of modulating a disease is a long and expensive process. An alternative approach that is just beginning to be explored is the potential repurposing of already established drugs which have been approved for clinical use. The current study examined the newly assembled National Institutes of Health (NIH) Chemical Genomic Center's pharmaceutical collection, which contains 2,816 approved drugs and bioactive compounds and sought to identify agents with an anti-cancer effect in thyroid cancer cell lines.

"To our knowledge, this is the first study to use such a large collection of clinical drugs to test anti-proliferative effect in cancer cells," said Electron Kebebew, MD, of the National Cancer Institute in Bethesda, MD and lead author of the study. "The compounds found to have potent activity in our screen represent possible opportunities to repurpose these drugs for the treatment of patients with aggressive recurrent or metastatic thyroid cancer."

In this study, researchers used a quantitative high-throughput screening (qHTS) approach to examine the effect of 2,816 clinically approved drugs on thyroid cancer cells. qHTS is a titration-based screening paradigm where compounds are screened at multiple concentrations. By employing this approach, researchers found numerous agents across different therapeutic categories and mode of action that had an anti-cancer effect.

"Clinicians can more readily translate these findings into therapy when the drug characteristics are well-known. The drugs can then be used in developing clinical trials or in some cases for off-label use," said Kebebew. "Furthermore, qHTS could be used for identifying therapeutics not only for cancer, but for many other diseases."

Other researchers working on the study include Lisa Zhang, Mei He and Naris Nilubol of the National Cancer Institute and Yaqin Zhang and Min Shen of the National Human Genome Research Institute in Bethesda, MD.

The article, "Quantitative high-throughput drug screening identifies novel classes of drugs with anticancer activity in thyroid cancer cells: Opportunities for repurposing," appears in the March 2012 issue of JCEM.

Founded in 1916, The Endocrine Society is the world's oldest, largest and most active organization devoted to research on hormones and the clinical practice of endocrinology. Today, The Endocrine Society's membership consists of over 14,000 scientists, physicians, educators, nurses and students in more than 100 countries. Society members represent all basic, applied and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland.

Most Popular Now

AstraZeneca to acquire CinCor Pharma to strengthen…

AstraZeneca has entered into a definitive agreement to acquire CinCor Pharma, Inc. (CinCor), a US-based clinical-stage biopharmaceutical company, focused on developing no...

NextPoint Therapeutics announces $80 million Serie…

NextPoint Therapeutics, a biotechnology company developing a new world of precision immuno-oncology, announced today that it raised $80 million in Series B financing co-l...

Time-restricted eating reshapes gene expression th…

Numerous studies have shown health benefits of time-restricted eating including increase in life span in laboratory studies, making practices like intermittent fasting a ...

Incurable liver disease may prove curable

Research led by Associate Professor Duc Dong, Ph.D., has shown for the first time that the effects of Alagille syndrome, an incurable genetic disorder that affects the li...

Scientists develop a cancer vaccine to simultaneou…

Scientists are harnessing a new way to turn cancer cells into potent, anti-cancer agents. In the latest work from the lab of Khalid Shah, MS, PhD, at Brigham and Women’s ...

Bayer to accelerate drug discovery with Google Clo…

Bayer AG and Google Cloud announced a collaboration to drive early drug discovery that will apply Google Cloud's Tensor Processing Units (TPUs), which are custom-develope...

COVID-19 vaccines, prior infection reduce transmis…

Vaccination and boosting, especially when recent, helped to limit the spread of COVID-19 in California prisons during the first Omicron wave, according to an analysis by ...

Study identifies potential new approach for treati…

Targeting iron metabolism in immune system cells may offer a new approach for treating systemic lupus erythematosus (SLE) - the most common form of the chronic autoimmune...

Nanotechnology may improve gene therapy for blindn…

Using nanotechnology that enabled mRNA-based COVID-19 vaccines, a new approach to gene therapy may improve how physicians treat inherited forms of blindness. A collabo...

Acquisition of Neogene Therapeutics completed

AstraZeneca has completed the acquisition of Neogene Therapeutics Inc. (Neogene), a global clinical-stage biotechnology company pioneering the discovery, development and ...

Modified CRISPR-based enzymes improve the prospect…

Many genetic diseases are caused by diverse mutations spread across an entire gene, and designing genome editing approaches for each patient’s mutation would be impractic...

Pfizer expands 'An Accord for a Healthier World' p…

Pfizer Inc. (NYSE: PFE) announced that it has significantly expanded its commitment to An Accord for a Healthier World to offer the full portfolio of medicines and vaccin...