Scientists discover new way to target cancer

Scientists have discovered a new way to target cancer through manipulating a master switch responsible for cancer cell growth. The findings, published in the journal Cancer Cell, reveal how cancer cells grow faster by producing their own blood vessels.

Cancer cells gain the nutrients they need by producing proteins that make blood vessels grow, helping deliver oxygen and sugars to the tumour. These proteins are vascular growth factors like VEGF - the target for the anti-cancer drug Avastin. Making these proteins requires the slotting together of different parts of genes, a process called splicing.

Scientists at UWE Bristol and the University of Bristol discovered that mutations in one specific cancer gene can control how splicing is balanced, allowing a master switch in the cell to be turned on. This master switch of splicing makes cancer cells grow faster, and blood vessels to grow more quickly, as they alter how VEGFs are put together.

In experimental models, the researchers found that by using new drugs that block this master switch they prevented blood vessel growth and stopped the growth of cancers.

Dr Michael Ladomery spearheading the work from UWE Bristol, said: "The research clearly demonstrates that it may be possible to block tumour growth by targeting and manipulating alternative splicing in patients, adding to the increasingly wide armoury of potential anti-cancer therapies."

Professor David Bates who led the team from the University of Bristol's School of Physiology and Pharmacology, said: "This enables us to develop new classes of drugs that target blood vessel growth, in cancer and other diseases like blindness and kidney disease."

The work, which started on kidney cancer, also involved groups at Southmead Hospital, where patients with kidney disease helped by allowing tissues that had been removed during surgery to be used in the research.

Professor Steve Harper, Consultant Nephrologist and part of the research team, said: "This shows how important it is for patients, doctors and scientists to come together in an excellent environment like Bristol to make these groundbreaking discoveries."

Professor Moin Saleem, Consultant Pediatric Nephrologist, whose lab helped to make the cells used, added: "We are really grateful to the patients who allowed their cells to be used in this research, as we hope it will eventually help the development of new drugs."

The paper, entitled 'WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing', is published in Cancer Cell. The research was sponsored by a UWE Bristol Faculty PhD studentship, which funded Elianna Amin, the first author on the paper, and by University of Bristol research grants from the British Heart Foundation, Cancer Research UK, Wellcome Trust, Medical Research Council Fight for Sight and the Skin Cancer Research Fund.

Most Popular Now

AstraZeneca takes next steps towards broad and equ…

AstraZeneca has taken the next steps in its commitment to broad and equitable global access to the University of Oxford’s COVID-19 vaccine, following landmark agreements ...

Johnson & Johnson announces acceleration of it…

Johnson & Johnson (NYSE: JNJ) (the Company) today announced that through its Janssen Pharmaceutical Companies (Janssen) it has accelerated the initiation of the Phase 1/2...

Low-cost dexamethasone reduces death by up to one …

In March 2020, the RECOVERY (Randomised Evaluation of COVid-19 thERapY) trial was established as a randomised clinical trial to test a range of potential treatments for C...

Sanofi invests to make France its world class cent…

Sanofi detailed plans on how the Company will make significant investments in France to increase its vaccines research and production capacities, and contribute in respon...

Calquence showed promising clinical improvement in…

Results published in Science Immunology showed that Calquence (acalabrutinib), a Bruton’s tyrosine kinase (BTK) inhibitor, reduced markers of inflammation and improved cl...

Super-potent human antibodies protect against COVI…

A team led by Scripps Research has discovered antibodies in the blood of recovered COVID-19 patients that provide powerful protection against SARS-CoV-2, the coronavirus ...

New consortium EUbOPEN will provide tools to unloc…

Almost twenty years after deciphering the human genome, our understanding of human disease is still far from complete. One of the most powerful and versatile tools to bet...

AstraZeneca to supply Europe with up to 400 millio…

AstraZeneca has reached an agreement with Europe's Inclusive Vaccines Alliance (IVA), spearheaded by Germany, France, Italy and the Netherlands, to supply up to 400 milli...

Up to 45 percent of SARS-CoV-2 infections may be a…

An extraordinary percentage of people infected by the virus behind the ongoing deadly COVID-19 pandemic never show symptoms of the disease, according to the results of a ...

Researchers identify potent antibody cocktail to t…

Researchers at the University of Maryland School of Medicine (UMSOM) evaluated several human antibodies to determine the most potent combination to be mixed in a cocktail...

Gilead announces results from Phase 3 Trial of rem…

Gilead Sciences, Inc. (Nasdaq: GILD) announced topline results from the Phase 3 SIMPLE trial in hospitalized patients with moderate COVID-19 pneumonia. This open-label st...

Mayo finds convalescent plasma safe for diverse pa…

Mayo Clinic researchers and collaborators have found investigational convalescent plasma to be safe following transfusion in a diverse group of 20,000 patients. The findi...