Computational modelling allows insights into cell membrane fusion

Researchers from France, the UK and Austria have modelled the SNARE protein complex that acts as a catalyst in the fusion of two membranes, using the processing power of the Distributed European Infrastructure for Supercomputing Applications (DEISA). They hope to open up new opportunities for pharmaceutical development.

"Basic research is essential, since there are several aspects concerning the functioning of proteins and cell membranes that are not yet fully understood. A better understanding of these mechanisms will facilitate, for example, the development of new pharmaceutical agents," explains Dr Marc Baaden, researcher at the Laboratory of Theoretical Biochemistry in Paris. "By examining a phenomenon at the atomic level, we can gain insight into the behaviour of cell membranes and proteins in general and on a larger scale."

Many diseases are associated with functional disorders of the cell membranes. In the case studied by Dr Baaden and his colleagues, the cell membranes either do not fuse at all or fuse too heavily. The SNARE protein complex is responsible for this fusion. Disturbed functioning of the SNARE proteins may result in adult-onset diabetes, for example. Hence, understanding the SNARE function may facilitate development of new therapeutic treatments. Apart from medical science, the cosmetics industry and nanotechnology will benefit from a better understanding of protein functioning.

"Knowledge of the functioning of cell membranes will open up opportunities in the field of nanotechnology as well. In technical terms, the proteins we study are clever machines that perform their intended tasks excellently, that is, to fuse two lipid membranes firmly together," Dr Baaden points out.

While researchers frequently have to resort to pen and paper when describing events at molecule level - a technique that Dr Baaden dubs 'cartoon biology' and criticises for being easily misleading - the scientists involved in this study had been granted access to the DEISA network in the framework of the DEISA Extreme Computing Initiative (DECI), enabling them to develop am exceptionally complex model.

"Computational molecular modelling, or simulation, takes the physical properties into account in a more realistic manner," Dr Baaden states. "A good molecular model enables us to examine the smallest details of the system in a controlled fashion and under the desired circumstances. We can also easily change any of the properties of the model to test different hypotheses." As a result, simulation facilitates the examination of dynamic events.

"Traditionally, computational modelling has been applied to simulate a single membrane - this is already a very challenging task. We, however, simulated two lipid membranes held together by a protein complex, so our challenge was even greater," Dr. Baaden says.

For him, in the future, computational modelling methods will have to combine highly accurate atomic level modelling with coarse-grained models simulating a more extensive event. In addition, "communication between the simulations on various levels is important. This will allow us to simulate a detail of particular significance more accurately, and larger entities by means of a coarse-grained model," Dr Baaden concludes.

For further information, please visit:

  • http://www.deisa.org
  • http://www.baaden.ibpc.fr

    Copyright ©European Communities, 2007
    Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Primary endpoint met in COMET-TAIL Phase III trial…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Vir Biotechnology, Inc. (Vir) (Nasdaq: VIR) announced headline data from the randomised, multi-centre, open-label COMET-TAIL Phase...

Merck and Ridgeback's molnupiravir, an oral COVID-…

Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Ridgeback Biotherapeutics announced that the United Kingdom Medicines and Healthcare products Re...

Johnson & Johnson COVID-19 vaccine named one o…

The editors of Time announced that the Johnson & Johnson COVID-19 vaccine has been selected as one of Time's Best Inventions of 2021. The vaccine, for which Johnson & ...

New target for COVID-19 vaccines identified

Next generation vaccines for COVID-19 should aim to induce an immune response against 'replication proteins', essential for the very earliest stages of the viral cycle, c...

Safety concerns raised for neuroblastoma candidate…

St. Jude Children's Research Hospital scientists looking for drugs to improve survival of children with high-risk neuroblastoma found a promising candidate in CX-5461. Th...

Two billion doses of AstraZeneca’s COVID-19 vaccin…

AstraZeneca and its partners have released for supply two billion doses of their COVID-19 vaccine to more than 170 countries across every continent on the planet in the l...

Pfizer's novel COVID-19 oral antiviral treatment c…

Pfizer Inc. (NYSE: PFE) today announced its investigational novel COVID-19 oral antiviral candidate,PAXLOVID™, significantly reduced hospitalization and death, based on a...

'Dancing molecules' successfully repair severe spi…

Northwestern University researchers have developed a new injectable therapy that harnesses “dancing molecules” to reverse paralysis and repair tissue after severe spinal ...

Repurposing a familiar drug for COVID-19

For the past year and a half, the COVID-19 pandemic has continued to engulf the globe, fueled in part by novel variants and the uneven distribution of vaccines. Every day...

Researchers reveal a strategy for next-generation …

A study led by the Garvan Institute of Medical Research has revealed a guide to developing COVID-19 vaccines that both prevent the coronavirus from infecting human cells ...

A target for potential cancer drugs may, in fact, …

In recent years, much scientific effort and funding has focused on developing drugs that target an enzyme with the unwieldy name of Src homology 2-containing protein tyro...

A commonly found parasite could treat certain type…

Scientists have discovered that a deadly parasite, known to cause ill health in pregnant women and immunocompromised patients, could potentially be used to treat various ...