Locking down shape-shifting spike protein aids development of COVID-19 vaccine

The experimental vaccine against SARS-CoV-2 that was the first to enter human trials in the United States has been shown to elicit neutralizing antibodies and a helpful T-cell response with the aid of a carefully engineered spike protein that mimics the infection-spreading part of the virus.

The latest paper about a Moderna-NIH vaccine that recently entered phase 3 human trials was published today in the journal Nature; its leading authors are Barney Graham and Kizzmekia Corbett at the National Institute of Allergy and Infectious Diseases' (NIAID) Vaccine Research Center, part of the National Institutes of Health, and Andrea Carfi of biotech company Moderna. It describes both preclinical results and important protein engineering led by a team at The University of Texas at Austin.

The paper describes in part work to stabilize an otherwise-shifting part of the virus: the protein that fuses with and infects cells, called the spike protein. Earlier research into coronaviruses was critical for the fastest-ever progression from virus genome sequencing to vaccine testing in humans, which took only 66 days.

"Several things were key for rapid vaccine development, including understanding the precise atomic-level structure of the spike protein and how to stabilize it," said UT Austin associate professor of molecular biosciences Jason McLellan, an author on the paper. "As fast as this all happened, the development was possible because of years of earlier research."

The members of the NIAID team and McLellan laboratory at UT Austin announced earlier this year that they had mapped the molecular structure of a stabilized spike protein within weeks of receiving the genetic sequence, publishing the structure of the SARS-CoV-2 spike protein in the journal Science. NIAID and the biotechnology company Moderna, based in Cambridge, Massachusetts, worked to develop a messenger RNA (mRNA) vaccine, which, according to the NIH, directs the body's cells to express the spike in its prefusion conformation to elicit an immune response. Today's paper describes findings that the vaccine keeps infection from spreading into the airways of mice, produces neutralizing antibodies and prompts a response in immune cells called memory T-cells.

The stabilized spike protein, known as the S-2P protein, also features in several other coronavirus vaccines currently in clinical trials.

The SARS-CoV-2 spike protein is a shape-shifter, changing its structure before and after fusing with cells. The immune system responds best when the spike protein is in its prefusion shape, so McLellan's team reengineered the protein in two key places to lock it into that shape.

McLellan's postdoctoral researcher Nianshuang Wang had identified genetic mutations necessary to stabilize the shape-shifting spike protein for MERS-CoV back in 2017, and the team found the same tactic works with the new coronavirus. Using small genetic modifications to the gene sequence that encodes for the protein, the researchers essentially make part of the spring-loaded portion of the molecule more rigid, preventing it from rearranging.

Instead of a painful process of trial and error, the researchers designed the necessary mutations within about a day of receiving the SARS-CoV-2 virus genome. The McLellan lab completed the atomic-level structure, and graduate student Daniel Wrapp harvested and purified the spike protein. Soon after, Corbett and Graham at the NIAID verified that the S-2P protein generated potent antibodies in mice.

Kizzmekia S Corbett, Darin K Edwards, Sarah R Leist, Olubukola M Abiona, Seyhan Boyoglu-Barnum, Rebecca A Gillespie, Sunny Himansu, Alexandra Schäfer, Cynthia T Ziwawo, Anthony T DiPiazza, Kenneth H Dinnon, Sayda M Elbashir, Christine A Shaw, Angela Woods, Ethan J Fritch, David R Martinez, Kevin W Bock, Mahnaz Minai, Bianca M Nagata, Geoffrey B Hutchinson, Kai Wu, Carole Henry, Kapil Bahi, Dario Garcia-Dominguez, LingZhi Ma, Isabella Renzi, Wing-Pui Kong, Stephen D Schmidt, Lingshu Wang, Yi Zhang, Emily Phung, Lauren A Chang, Rebecca J Loomis, Nedim Emil Altaras, Elisabeth Narayanan, Mihir Metkar, Vlad Presnyak, Cuiping Liu, Mark K Louder, Wei Shi, Kwanyee Leung, Eun Sung Yang, Ande West, Kendra L Gully, Laura J Stevens, Nianshuang Wang, Daniel Wrapp, Nicole A Doria-Rose, Guillaume Stewart-Jones, Hamilton Bennett, Gabriela S Alvarado, Martha C Nason, Tracy J Ruckwardt, Jason S McLellan, Mark R Denison, James D Chappell, Ian N Moore, Kaitlyn M Morabito, John R Mascola, Ralph S Baric, Andrea Carfi, Barney S Graham.
SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.
Nature, 2020. doi: 10.1038/s41586-020-2622-0.

Most Popular Now

Anticancer drug may improve outcome for severe COV…

Treating severe COVID-19 patients with the anticancer drug bevacizumab may reduce mortality and speed up recovery, according to a small clinical study in Italy and China ...

Pfizer and BioNTech commence global clinical trial…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced today that the first participants have been dosed in a global Phase 2/3 study to further evaluate the saf...

GSK and Vir Biotechnology expand coronavirus colla…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Vir Biotechnology, Inc. (Nasdaq: VIR) have signed a binding agreement to expand their existing collaboration to include the resear...

One dose of COVID-19 vaccine provokes strong immun…

Although clinical trial data are encouraging, real-world evidence with regard to the COVID-19 vaccine remains scarce. In particular, response to the vaccine among those p...

Johnson & Johnson announces submission of appl…

Johnson & Johnson (NYSE: JNJ) (the Company) announced that Janssen Biotech, Inc., has submitted an application to the U.S. Food and Drug Administration (FDA) requesting E...

Johnson & Johnson Announces Submission to Worl…

Johnson & Johnson (NYSE: JNJ) (the Company) announced that Janssen-Cilag International N.V. has submitted for Emergency Use Listing (EUL) to the World Health Organization...

Could a nasal spray prevent coronavirus transmissi…

A nasal antiviral created by researchers at Columbia University Vagelos College of Physicians and Surgeons blocked transmission of SARS-CoV-2 in ferrets, suggesting the n...

European Commission purchases additional 150 milli…

Moderna, Inc. (Nasdaq: MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, today announced that the European Commission purchased an...

Neandertal gene variants both increase and decreas…

Last year, researchers at Karolinska Institutet in Sweden and the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany showed that a major genetic risk ...

CureVac initiates rolling submission with European…

CureVac N.V. (Nasdaq: CVAC), a global biopharmaceutical company developing a new class of transformative medicines based on messenger ribonucleic acid (mRNA), today annou...

Pfizer and BioNTech publish data from in vitro stu…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced the publication in Nature Medicine of data from in vitro studies that demonstrate that sera from in...

Sanofi to provide manufacturing support to Johnson…

Sanofi has entered into an agreement with Janssen Pharmaceutical NV and Janssen Pharmaceuticals, Inc., two of the Janssen Pharmaceutical Companies of Johnson & Johnson, u...