New potential drug targets discovered for preventing prostate cancer cell growth

Researchers from VTT Technical Research Centre of Finland and the University of Turku have discovered four metabolic enzymes regulating prostate cancer cell growth. Inhibition of these enzymes prevents prostate cancer cell growth in cultured cells. This knowledge can be used to identify different subtypes of prostate cancer and for designing targeted therapies for prostate cancer.

Eicosanoid hormones, which are metabolites of arachidonic acid found in animal-based foods, such as eggs and meat, are essential regulators of normal bodily functions. Metabolic dysfunction relating to these bioactive lipids plays a role in many diseases. Prostate cancer cells use increased arachidonic acid metabolism and eicosanoid production to fuel their enhanced growth.

In addition to previously discovered enzymes that contribute to prostate cancer cell growth, the new study published by researchers from VTT and the University of Turku identifies four enzymes that regulate arachidonic acid metabolism and reveals that prostate cancer cell growth can be inhibited by preventing the functioning of these enzymes.

The study analysed the prevalence of enzymes involved in arachidonic acid metabolism in hundreds of prostate cancer samples, normal prostate samples, and other healthy tissues. The enzymes with the highest expression in prostate cancer samples were selected for further studies in prostate cancer cells. The scientists discovered that certain enzymes were more prevalent than others in different kinds of prostate cancers. This knowledge can be used to identify different subtypes of prostate cancer in the future. The findings of the study provide valuable new information and can potentially lead to the discovery of new ways to treat prostate cancer.

The findings relating to the prevalence and effects of enzymes involved in arachidonic acid metabolism were published in The American Journal of Pathology in February 2011 (Arachidonic Acid Pathway Members PLA2G7, HPGD, EPHX2, and CYP4F8 Identified as Putative Novel Therapeutic Targets in Prostate Cancer. The American Journal of Pathology, Volume 178, Issue 2, Pages 525–536, February 2011).

About VTT Technical Research Centre of Finland
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 280 million and its personnel totals 2,900.

Most Popular Now

Therapy using dual immune system cells effectively…

A newly developed immunotherapy that simultaneously uses modified immune-fighting cells to home in on and attack two antigens, or foreign substances, on cancer cells was ...

How to develop new drugs based on merged datasets

Polymorphs are molecules that have different molecular packing arrangements despite identical chemical compositions. In a recent paper, researchers at GlaxoSmithKline (GS...

New drug combination effective against SARS-CoV-2 …

More countries with greater resources are opening up for a more normal life. But COVID-19 and the SARS-CoV-2 virus are still a significant threat in large parts of the wo...

Cleveland Clinic study suggests steroid nasal spra…

A recent Cleveland Clinic study found that patients who regularly use steroid nasal sprays are less likely to develop severe COVID-19-related disease, including a 20 to 2...

Sanofi to focus its COVID-19 development efforts o…

Recent positive interim results of Sanofi's mRNA-based COVID-19 vaccine candidate Phase 1/2 study confirm the company's platform robust capabilities and strategy in mRNA...

Discovery of mechanics of drug targets for COVID-1…

A team of international researchers, including McGill Professor Stéphane Laporte, have discovered the working mechanism of potential drug targets for various diseases suc...

Phase II/III trial shows Ronapreve™ (casirivimab a…

Roche (SIX: RO, ROG; OTCQX: RHHBY) today confirmed positive data from the phase II/III 2066 study, investigating Ronapreve™ (casirivimab and imdevimab) in patients hospit...

Pfizer and BioNTech receive first U.S. FDA Emergen…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) announced that the U.S. Food and Drug Administration (FDA) has authorized for emergency use a booster dose of the P...

AZD7442 request for Emergency Use Authorization fo…

AstraZeneca has submitted a request to the US Food and Drug Administration (FDA) for an Emergency Use Authorization (EUA) for AZD7442, its long-acting antibody (LAAB) com...

Pfizer and BioNTech receive CHMP positive opinion …

Pfizer Inc. (NYSE: PFE, "Pfizer") and BioNTech SE (Nasdaq: BNTX, "BioNTech") today announced that the Committee for Medicinal Products for Human Use (CHMP) of the Europea...

Boehringer Ingelheim acquires Abexxa Biologics to …

Boehringer Ingelheim announced the acquisition of Abexxa Biologics Inc., a biopharmaceutical company taking a new approach in the fields of immuno-oncology and oncology r...

GSK welcomes WHO recommendation for broad roll-out…

GlaxoSmithKline (GSK) plc welcomes and applauds the WHO recommendation for the broader deployment of GSK's RTS,S malaria vaccine to reduce childhood illness and deaths fr...