A step closer to cancer precision medicine

Researchers from the Faculty of Medicine and the Institute for Molecular Medicine (FIMM) at the University of Helsinki have developed a computational model, Combined Essentiality Scoring (CES) that enables accurate identification of essential genes in cancer cells for development of anti-cancer drugs.

Why are the essential genes important in cancer?

Cancer is the leading cause of death worldwide. Cancer cells grow faster usually with the activation of certain genes. Targeted therapies aim at inhibiting these genes that are activated only in cancer cells, and thus minimizing side effects to normal cells.

High-throughput genetic screening has been established for evaluating the importance of individual genes for the survival of cancer cells. Such an approach allows researchers to determine the so-called gene essentiality scores for nearly all genes across a large variety of cancer cell lines.

However, challenges with replicability of the estimated gene essentiality have hindered its use for drug target discovery.

"shRNA and CRISPR-Cas9 are the two common techniques used to perform high-throughput genetic screening. Despite improved quality control, the gene essentiality scores from these two techniques differ from each other on the same cancer cell lines," explains Wenyu Wang, first author of the study.

How can we do better?

To harmonize genetic screening data, researchers proposed a novel computational method called Combined Essentiality Scoring (CES) that predicts cancer essential genes using the information from shRNA and CRISPR-Cas9 screens plus molecular features of cancer cells. The team demonstrated that CES could detect essential genes with higher accuracy than the existing computational methods. Furthermore, the team showed that two predicted essential genes were indeed correlated with poor prognosis separately for breast cancer and leukaemia patients, suggesting their potential as drug targets (Figure 1).

"Improving gene essentiality scoring is just a beginning. Our next aim is to predict drug-target interactions by integrating drug sensitivity and gene essentiality profiles. Given the ever-increasing volumes of functional screening datasets, we hope to extend our knowledge of drug target profiles that will eventually benefit drug discovery in personalized medicine," says Assistant Professor Jing Tang, corresponding author of the study.

Wenyu Wang, Alina Malyutina, Alberto Pessia, Jani Saarela, Caroline A Heckman, Jing Tang.
Combined gene essentiality scoring improves the prediction of cancer dependency maps.
EBioMedicine, November 12, 2019. doi: 10.1016/j.ebiom.2019.10.051.

Most Popular Now

Theravance Biopharma and Pfizer Inc. enter global …

Theravance Biopharma Ireland Limited, a subsidiary of Theravance Biopharma, Inc. (NASDAQ: TBPH) ("Theravance Biopharma") and Pfizer Inc. (NYSE: PFE) ("Pfizer") today anno...

Amgen and Allergan submit Biologics License Applic…

Amgen (NASDAQ:AMGN) and Allergan plc. (NYSE:AGN) today announced the submission of a Biologics License Application (BLA) to the U.S. Food and Drug Administration (FDA) fo...

Researchers identify immune-suppressing target in …

Researchers at The University of Texas MD Anderson Cancer Center have identified a tenacious subset of immune macrophages that thwart treatment of glioblastoma with anti-...

Lynparza recommended by FDA advisory committee for…

AstraZeneca and MSD Inc., Kenilworth, NJ, US (MSD: known as Merck & Co., Inc. inside the US and Canada) announced that the US Food and Drug Administration (FDA) Oncologic...

Old drug offers new hope for children with devasta…

A drug that once helped obese adults lose weight, but was withdrawn from the market due to heart risks, may be safe and effective for children with a life-threatening sei...

Intermittent fasting: live 'fast,' live longer?

For many people, the New Year is a time to adopt new habits as a renewed commitment to personal health. Newly enthusiastic fitness buffs pack into gyms and grocery stores...

Pharmacies leave customers hanging when it comes t…

Proper disposal of leftover medication, particularly antibiotics and opioids, can help reduce antibiotic resistance, prevent children from being poisoned and stop the mis...

Researchers determine how a specific protein regul…

Immune checkpoints are surface proteins that cancer cells use to evade immune response. These surface proteins are critical for cancer cell growth and drugs targeting the...

Lynparza approved in the US as a 1st-line maintena…

AstraZeneca and MSD Inc., Kenilworth, N.J., US (MSD: known as Merck & Co., Inc. inside the US and Canada) announced that Lynparza (olaparib) has been approved in the US f...

Scientists find a new use for already known anti-c…

The world scientific community is waging a difficult and prolonged war on cancer. New research in the field of immunogenic cell death can extend the area of drugs applica...

Farxiga granted FDA Priority Review for patients w…

AstraZeneca today announced the US Food and Drug Administration (FDA) has accepted a supplemental New Drug Application (sNDA) and granted Priority Review for Farxiga (dap...

Lilly opens Phase 3 clinical trial in RET-mutant m…

Eli Lilly and Company (NYSE: LLY) announced the opening of the LIBRETTO-531 clinical trial [NCT04211337] for selpercatinib, also known as LOXO-292, for treatment-naive RE...