A promising treatment for an incurable, deadly kidney disease

A potential treatment for polycystic kidney disease - a genetic disorder that causes the kidneys to swell with multiple cysts and can eventually lead to organ failure - has shown promising results in animal testing. A study describing the drug's development and testing appears today in Nature Communications. The study shows an approximately 50 percent reduction in kidney size in afflicted mice following treatment. The drug is now in early clinical trials in human subjects, said Dr. Vishal Patel, Associate Professor of Internal Medicine at UT Southwestern and senior author of the study.

Autosomal dominant polycystic kidney disease (ADPKD) affects about 12 million people worldwide, with half developing end-stage kidney disease by age 60, according to the study. "Once the kidneys have failed, the only options for survival are dialysis or a kidney transplant," Dr. Patel said. "A large percentage of ADPKD patients on dialysis die each year while waiting for a donated kidney."

The only drug currently approved to treat ADPKD, called Jynarque (generic name tolvaptan), carries the FDA's highest warning in its prescribing information, a box notifying prescribers and users of the possibility of "serious and potentially fatal liver injury."

The new treatment cooperatively developed at UT Southwestern and Regulus Therapeutics Inc., a biopharmaceutical company based in California, showed no evidence of toxicity in animals or in human cell tests, according to the study. It is preferentially delivered to kidneys rather than the liver after being administered, according to the Nature Communications study.

"We earlier showed that levels of a tiny RNA fragment called microRNA-17 are increased in models of ADPKD," Dr. Patel said. "MicroRNA-17 interferes with the normal function of other, beneficial RNAs, causing kidney cysts to grow. RGLS4326, as the new drug is called in development, works by blocking the harmful microRNA-17."

Early phase one clinical trials began last year, conducted by Regulus Therapeutics. The FDA has asked for additional toxicity information from animal testing before human trials can move to the next step, Dr. Patel said.

Edmund C Lee, Tania Valencia, Charles Allerson, Annelie Schairer, Andrea Flaten, Matanel Yheskel, Kara Kersjes, Jian Li, Sole Gatto, Mandeep Takhar, Steven Lockton, Adam Pavlicek, Michael Kim, Tiffany Chu, Randy Soriano, Scott Davis, John R Androsavich, Salma Sarwary, Tate Owen, Julia Kaplan, Kai Liu, Graham Jang, Steven Neben, Philip Bentley, Timothy Wright, Vishal Patel.
Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease.
Nature Communicationsvolume 10, Article number: 4148 (2019). doi: 10.1038/s41467-019-11918-y

Most Popular Now

AstraZeneca amends collaboration with Ironwood for…

AstraZeneca has amended its collaboration agreement with Ironwood Pharmaceuticals, Inc. (Ironwood) in China mainland, China Hong Kong and China Macau for Linzess (linaclo...

Cause of antibiotic resistance identified

Scientists have confirmed for the first time that bacteria can change form to avoid being detected by antibiotics in the human body. Studying samples from elderly patient...

Bayer, Brigham and Women’s Hospital, and Massachus…

Bayer and Partners HealthCare's founding members Brigham and Women's Hospital (BWH) and Massachusetts General Hospital (MGH) today announced the launch of a joint lab to ...

FDA grants Fast Track designation for Farxiga in h…

AstraZeneca announced that the US Food and Drug Administration (FDA) has granted Fast Track designation for the development of Farxiga (dapagliflozin) to reduce the risk ...

Amgen announces positive results from two Phase 3 …

Amgen (NASDAQ:AMGN) today announced that the results of a prespecified interim analysis of an open-label, randomized, controlled global multicenter Phase 3 trial (2012021...

Brilinta monotherapy in high-bleeding risk patient…

New data from TWILIGHT, a Phase IV independent trial (funded by AstraZeneca), showed that in patients at high-bleeding risk who underwent PCI and completed 3 months of du...

Gene-targeted cancer drugs, slow release overcome …

Biomedical engineers at Duke University have developed a method to address failures in a promising anti-cancer drug, bringing together tools from genome engineering, prot...

Educational campaign helps teens and their caregiv…

Teenagers face many challenges, and growing up with a chronic skin disease called atopic dermatitis (AD) can impact the ups and downs and transitions to young adulthood. ...

Study points to new drug target in fight against c…

Researchers have identified a potential new drug target in the fight against cancer. In a study this week in the Proceedings of the National Academy of Sciences, an inter...

AstraZeneca divests rights for Losec to Cheplaphar…

AstraZeneca has agreed to sell the global commercial rights, excluding China, Japan, the US and Mexico, for Losec (omeprazole) and associated brands to Cheplapharm Arznei...

Cheaper drug just as effective protecting heart in…

A new clinical trial conducted at The Ohio State University Wexner Medical Center found a cost-effective generic medication works just as well as a more expensive drug in...

Dengue virus becoming resistant to vaccines and th…

Researchers from Duke-NUS Medical School (DukeNUS), in collaboration with the Agency for Science, Technology and Research (A*STAR)'s Bioinformatics Institute (BII), and t...