Researchers identify enzyme that suppresses immune system in breast cancer

Immunotherapies have transformed cancer care, but their successes have been limited for reasons that are both complex and perplexing. In breast cancer especially, only a small number of patients are even eligible to undergo treatment with immunotherapies, and most see little benefit.

But in a pre-clinical study led by the Duke Cancer Institute, researchers outlined a potential way to improve those results by uncloaking breast cancer tumors to the body's immune system.

Publishing this month in the journal Nature Communications, the researchers identified an enzyme in cells involved in regulating the growth and spread of breast cancers. Testing in mice, they demonstrated a way to shut down the enzyme's activity to allow T-cells to mount an immune attack.

"We found that inhibition of the activity of this enzyme decreased the ability of macrophages in tumors to suppress an immune attack on cancer cells and indeed encouraged them to start producing chemicals that attract more cancer-killing T cells into the tumor," said Donald McDonnell, Ph.D., chair of Duke's Department of Pharmacology & Cancer Biology. "We can basically uncloak the tumor to the immune system."

McDonnell and colleagues, including lead author and collaborator Luigi Racioppi, M.D., Ph.D., reported that a kinase, or enzyme, called CaMKK2 is highly expressed in macrophages within human breast tumors. They performed a series of exploratory studies that revealed the molecule's potential utility as a therapeutic target for breast cancer. Working with colleagues at the University of North Carolina at Chapel Hill, they developed a new class of drugs that inhibited the growth of human breast tumors grown in mice.

"The use of this molecule suppressed tumor growth not only by increasing the accumulation of tumor-killing T cells, but also by reducing the tumor's capability to suppress T cell activity," McDonnell said. "It's solving two problems, like we couldn't get into the bar, and if we did, we couldn't get a drink. Now we can do both."

McDonnell said additional studies are ongoing, with the goal of acquiring data to launch a clinical trial in breast cancer patients within the next 18 months.

Luigi Racioppi, Erik R Nelson, Wei Huang, Debarati Mukherjee, Scott A Lawrence, William Lento, Anna Maria Masci, Yiquin Jiao, Sunghee Park, Brian York, Yaping Liu, Amy E Baek, David H Drewry, William J Zuercher, Francesca R Bertani, Luca Businaro, Joseph Geradts, Allison Hall, Anthony R Means, Nelson Chao, Ching-yi Chang, Donald P McDonnell.
CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer.
Nature Communications 10, Article number: 2450 (2019). doi: 10.1038/s41467-019-10424-5.

Most Popular Now

Regorafenib to be tested in brain cancer patients …

Bayer announced that the regorafenib arm of the platform trial "GBM AGILE" (Glioblastoma Adaptive Global Innovative Learning Environment) opened for enrollment in the US ...

Sanofi and Google to develop new healthcare Innova…

Sanofi and Google will establish a new virtual Innovation Lab with the ambition to radically transform how future medicines and health services are delivered by tapping i...

Bristol-Myers Squibb provides update on pending me…

Bristol-Myers Squibb Company (NYSE: BMY) today provided an update on the approval process and timeline for the Company’s pending merger with Celgene Corporation (NASDAQ: ...

Breztri Aerosphere (PT010) approved in Japan for p…

AstraZeneca announced that Breztri Aerosphere (budesonide/glycopyrronium/ formoterol fumarate), formerly PT010, has been approved in Japan as a triple-combination therapy...

Artificial DNA can control release of active ingre…

A drug with three active ingredients that are released in sequence at specific times: Thanks to the work of a team at the Technical University of Munich (TUM), what was o...

Human-on-a-chip model tests cancer drug efficacy a…

A reconfigurable "body-on-a-chip" model could transform drug development by simultaneously measuring compound efficacy and toxicity, for both target cells and other organ...

Pathogen engineered to self-destruct underlies can…

A team of investigators has developed a cancer vaccine technology using live, attenuated pathogens as vectors. A feature of the vaccine causes these bacteria to self-dest...

Novartis successfully completes acquisition of Xii…

Novartis today announced that it has completed its acquisition of Xiidra® (lifitegrast ophthalmic solution) 5%, the first and only prescription treatment approved to trea...

LEO Pharma completes the acquisition of Bayer’s pr…

LEO Pharma and Bayer announced today the achievement of the relevant closing conditions to allow the transfer of Bayer’s global prescription dermatology business to LEO P...

How gastric stem cells fight bacteria

Stem cells are not only key players in tissue regeneration, they are also capable of taking direct action against bacteria. This is the finding of a study conducted by re...

New study showing drug prolongs life for patients …

Women with ovarian cancer who have undergone four or more rounds of chemotherapy typically haven't had much hope that another treatment option will lengthen their lives i...

Pfizer completes acquisition of Therachon

Pfizer Inc. (NYSE: PFE) announced the successful completion of its acquisition of the privately held clinical-stage biotechnology company Therachon Holding AG. Under the ...