When good macrophages go bad

Many factors affect cancer treatment outcome, such as the size and location of the tumor, availability of effective treatments, and timing of intervention. But some cancers are so aggressive that outcome is poor, even after early diagnosis and chemotherapy. Researchers have focused their attention on trying to understand what makes some cancers less treatable than others. Now, researchers at Children's Hospital Los Angeles reveal a mechanism by which some cancers trick healthy cells into protecting tumors.

Yves DeClerck, MD, of the Children's Center for Cancer and Blood Diseases and the Saban Research Institute at Children's Hospital Los Angeles, has dedicated his career to understanding how cancer cells interact with the surrounding normal tissue to escape the effects of therapy. Research has shown that tumors with high levels of a protein called Plasminogen Activator Inhibitor 1 (PAI-1) are more aggressive and are associated with poorer outcomes. In the new study, published November 20th in the journal Cell Reports, DeClerck's team demonstrated that cancer cells use PAI-1 to trick the body's immune system into supporting the cancer.

DeClerck and his team, led by postdoctoral research fellow Marta Kubala, PhD, characterized a relationship between tumors and the immune system. "In this study, we focused on the role of immune cells called macrophages and how PAI-1 affects their activity," explains Kubala. As important players in the immune system, macrophages find and destroy cancer cells or foreign invaders like bacteria. While macrophages are normally considered anti-cancer, DeClerck's team showed that PAI-1 pushes macrophages into an alternate, pro-cancer state (called M2) by recruiting common players in the immune system - IL-6 and STAT3 - effectively signaling to the macrophages to support rather than attack tumor cells.

"A macrophage can either be a friend or an enemy to cancer cells," explains DeClerck, who is also a professor of pediatrics at the Keck School of Medicine of the University of Southern California. "The cancer communicates with the macrophages, telling them to become friendly. So, the macrophages change their behavior and support the tumor." In altering the function of surrounding, healthy tissue, the cancer is better able to survive and spread.

The team around DeClerck also shows that cancer cells can use PAI-1 to promote movement of these pro-cancer M2 macrophages into the tumors, where they protect the cancer and repair any damage that chemotherapy may have inflicted. This symbolic one-two punch culminates in a stronger, more difficult-to-treat cancer.

DeClerck and his team have uncovered what appears to be a very common mechanism used by many cancers to commandeer part of the body's immune system. In order to investigate how broadly this cellular communication could impact cancer treatment, DeClerck's team studied the National Institute of Health's Cancer Genome Atlas, a library of genetic information from more than 11,000 patient samples, and found that many different cancers have this relationship. "We looked at patient data from neuroblastoma and breast, prostate, colon, and lung cancers. Every time we see higher levels of PAI-1, we see more evidence of pro-cancer M2 macrophages," says DeClerck.

This new understanding of just how PAI-1 communicates with macrophages to change their activity has the potential to alter our approach to cancer treatment since these findings are applicable to most types of cancer. "It is clear that the tumor microenvironment, including cells of the immune system, is crucial in cancer development," explains Kubala.

While cancers vary widely in terms of location, treatment, and survival rates, their manipulation of macrophages represents a common thread, which is important for devising improved treatments for aggressive cancers. "Targeting PAI-1 could be beneficial in cancer," DeClerck says, "but much more work needs to be done." He cautions that the answer is not as simple as eliminating PAI-1, which is also made in healthy tissue and is an important part of the blood clotting process. But these results, which uncover a complete pathway of communication between tumors and macrophages, lay the foundation for a promising avenue of research.

Kubala MH, Punj V, Placencio-Hickok VR, Fang H, Fernandez GE, Sposto R, DeClerck YA.
Plasminogen Activator Inhibitor-1 Promotes the Recruitment and Polarization of Macrophages in Cancer.
Cell Rep. 2018 Nov 20;25(8):2177-2191.e7. doi: 10.1016/j.celrep.2018.10.082.

Most Popular Now

Novartis rises to second place in 2018 Access to M…

Novartis ranked second in the 2018 Access to Medicine Index (ATMi), up from 3rd place in 2016, in recognition of its long-standing efforts to improve worldwide access to ...

MSD is looking for a digital health solution to em…

MSD Lebanon is looking for an external partner to co-create a digital solution that helps oncologists to stay updated with relevant clinical content about cancer. The sol...

Sanofi builds focus on rare blood disorders and ca…

Some of the most serious unmet patient needs today are in the field of hematology. Rare blood disorders and blood-related cancers continue to be a major focus of research...

Lilly submits New Drug Application to the FDA for …

Eli Lilly and Company (NYSE: LLY) has announced the submission of a New Drug Application (NDA) to the U.S. Food and Drug Administration (FDA) for lasmiditan for the acute...

FDA approves new treatment for patients with acute…

The U.S. Food and Drug Administration today approved Daurismo (glasdegib) tablets to be used in combination with low-dose cytarabine (LDAC), a type of chemotherapy, for t...

New study reveals probiotics do not help children …

Probiotics are a multibillion-dollar industry with marketing claims of being an effective treatment for a multitude of ailments, including diarrhea. However, findings fro...

Merck and Pfizer provide update on avelumab in pla…

Merck and Pfizer Inc. (NYSE: PFE) today announced that the Phase III JAVELIN Ovarian 200 trial evaluating avelumab* alone or in combination with pegylated liposomal doxor...

U.S. FDA approves Larotrectinib, the first TRK inh…

The U.S. Food and Drug Administration (FDA) has approved larotrectinib, the first oral TRK inhibitor, under the brand name Vitrakvi®. The approval is for the treatment of...

Bristol-Myers Squibb awards "Golden Tickets…

Bristol-Myers Squibb Company (NYSE: BMY) and LabCentral, an innovative, shared laboratory space designed as a launchpad for life-sciences and biotech startups, today anno...

FDA approves first treatment for Lambert-Eaton mya…

The U.S. Food and Drug Administration today approved Firdapse (amifampridine) tablets for the treatment of Lambert-Eaton myasthenic syndrome (LEMS) in adults. LEMS is a r...

Alcon to highlight its vision, strategy and benefi…

Alcon, the eye care division of Novartis, will today hold its first Capital Markets Day for investors and analysts in relation to the previously-announced intention of No...

Scorpion venom to shuttle drugs into the brain

The Peptides and Proteins lab at the Institute for Research in Biomedicine (IRB Barcelona) has published a paper in Chemical Communications describing the capacity of a s...