DNA islands effective as 'anti-bacterial drones'

Genomic "islands" that evolved from viruses can be converted into "drones" that disable Staphylococcus aureus, bacteria that are often resistant to antibiotics and pose a threat to safe hospital care, a new study finds. Conducted by researchers from NYU School of Medicine and published online in the journal Nature Biotechnology, the study found that a certain type of bacterial DNA can be engineered to replace disease-causing genes with ones that kill or cripple bacteria.

The type of DNA featured in the study, a "pathogenicity island," evolved from viruses that stayed permanently in the bacteria they infected to become a part of their genetic system. The result is a hybrid entity that contains useful genes passed on by the bacteria when they reproduce, but that is also in some cases cut out of the bacterial superstructure, and packaged like a virus in a protein shell (capsid) that can inject its DNA into other bacterial cells.

This mix of evolutionary leaps has fashioned genomic islands as perfect drone-like vehicles to deliver genetic payloads throughout bacterial populations, say the study authors. When injected into mice with an otherwise lethal staph infection, the research team's engineered S. aureus pathogenicity islands (SaPIs) killed the bacteria and rescued the treated animals.

"Given efficacy seen so far, and the safety record of related treatment attempts, we are getting set to test our drones against a Staph infection that interferes with milk production in cattle, and if successful there, in humans with Staph infections," says senior study author Richard P. Novick, MD, the Recanati Family Professor of Science at the Skirball Institute of Biomolecular Medicine within NYU School of Medicine, and a member of the National Academy of Sciences.

"It is an extraordinarily rewarding experience to spend a long career studying an infection, and then to arrive at a potentially new way to treat it," says Novick, who earned his MD at NYU School of Medicine and has been studying Staph ever since.

One-third of the human population are carriers of S. aureus, generally without symptoms. But those with weakened immune systems may develop life-threatening infections in the bloodstream, lungs (pneumonia), or organs (sepsis). S. aureus has long posed a threat in hospitals, where there are numerous surfaces for bacteria to colonize, and has more recently become a growing problem in the community (e.g. gyms, playgrounds, schools, military barracks, and doctor's offices).

In addition, antibiotics used against Staph are becoming less effective because an increasing number of strains have become resistant to these drugs. With many Staph infections now untreatable after decades of antibiotic over-use, the field urgently seeks new ways to counter infections.

Borrowing Viral Tricks

It was during research in the 1980s on a gene called TSST1 - which causes a dangerous complication of Staph infections called toxic shock syndrome - that Novick and colleagues first discovered that a pathogenicity island carried TSST1 as part of its cargo. The team's subsequent drone design effort grew from the understanding that Staph bacteria depend on genomic islands to share useful genes. In this way, an entire population benefits when any one cell stumbles on a change that helps it to survive, and not just its offspring.

"The natural role of islands in such gene transfers set them up as a new treatment approach, if they could be made to contain genes that hampered bacteria instead of encouraging infection," says Hope Ross, PhD, a longtime member of the lab. In 2013, it was Ross that first saw this potential, and suggested that the lab focus on it.

As a first test, the team added to their island a CRISPR/Cas9 sequence, a genetic system that targets and cuts the DNA chain within a targeted gene, a lethal event in bacteria. Another drone studied by the team contains a gene for the enzyme lysostaphin, which directly kills bacteria by breaking down their cell walls. The team also studied a CRISPR approach with the potential to disable several, disease-causing bacterial genes without killing the bacteria, which promises to prevent infections from becoming drone resistant.

Novick's study also led to another important conclusion. "The drone system would not, like antibiotics, disrupt patients' microbiomes, the mix of bacteria in the gut, some species of which are essential to digestion and to general health," he says.

Ram G, Ross HF, Novick RP, Rodriguez-Pagan I, Jiang D.
Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice.
Nat Biotechnol. 2018 Sep 24. doi: 10.1038/nbt.4203.

Most Popular Now

Novartis rises to second place in 2018 Access to M…

Novartis ranked second in the 2018 Access to Medicine Index (ATMi), up from 3rd place in 2016, in recognition of its long-standing efforts to improve worldwide access to ...

Sanofi builds focus on rare blood disorders and ca…

Some of the most serious unmet patient needs today are in the field of hematology. Rare blood disorders and blood-related cancers continue to be a major focus of research...

MSD is looking for a digital health solution to em…

MSD Lebanon is looking for an external partner to co-create a digital solution that helps oncologists to stay updated with relevant clinical content about cancer. The sol...

FDA approves new treatment for patients with acute…

The U.S. Food and Drug Administration today approved Daurismo (glasdegib) tablets to be used in combination with low-dose cytarabine (LDAC), a type of chemotherapy, for t...

Lilly submits New Drug Application to the FDA for …

Eli Lilly and Company (NYSE: LLY) has announced the submission of a New Drug Application (NDA) to the U.S. Food and Drug Administration (FDA) for lasmiditan for the acute...

Merck and Pfizer provide update on avelumab in pla…

Merck and Pfizer Inc. (NYSE: PFE) today announced that the Phase III JAVELIN Ovarian 200 trial evaluating avelumab* alone or in combination with pegylated liposomal doxor...

New study reveals probiotics do not help children …

Probiotics are a multibillion-dollar industry with marketing claims of being an effective treatment for a multitude of ailments, including diarrhea. However, findings fro...

U.S. FDA approves Larotrectinib, the first TRK inh…

The U.S. Food and Drug Administration (FDA) has approved larotrectinib, the first oral TRK inhibitor, under the brand name Vitrakvi®. The approval is for the treatment of...

FDA approves first treatment for Lambert-Eaton mya…

The U.S. Food and Drug Administration today approved Firdapse (amifampridine) tablets for the treatment of Lambert-Eaton myasthenic syndrome (LEMS) in adults. LEMS is a r...

Bristol-Myers Squibb awards "Golden Tickets…

Bristol-Myers Squibb Company (NYSE: BMY) and LabCentral, an innovative, shared laboratory space designed as a launchpad for life-sciences and biotech startups, today anno...

Alcon to highlight its vision, strategy and benefi…

Alcon, the eye care division of Novartis, will today hold its first Capital Markets Day for investors and analysts in relation to the previously-announced intention of No...

FDA grants breakthrough device designation to arti…

Bayer announced today that the U.S. Food and Drug Administration (FDA) granted Breakthrough Device Designation to the Artificial Intelligence Software for Chronic Thrombo...