Compounds in 'monster' radish could help tame cardiovascular disease

Step aside carrots, onions and broccoli. The newest heart-healthy vegetable could be a gigantic, record-setting radish. In a study appearing in ACS' Journal of Agricultural and Food Chemistry, scientists report that compounds found in the Sakurajima Daikon, or "monster," radish could help protect coronary blood vessels and potentially prevent heart disease and stroke. The finding could lead to the discovery of similar substances in other vegetables and perhaps lead to new drug treatments.

Grown for centuries in Japan, the Sakurajima Daikon is one of the Earth's most massive vegetables. In 2003, the Guinness Book of World Records certified a Sakurajima weighing nearly 69 pounds as the world's heaviest radish. Radishes are good sources of antioxidants and reportedly can reduce high blood pressure and the threat of clots, a pair of risk factors for heart attack and stroke. But to date, no studies have directly compared the heart-health benefits of the Sakurajima Daikon to other radishes. To address this knowledge gap, Katsuko Kajiya and colleagues sought to find out what effects this radish would have on nitric oxide production, a key regulator of coronary blood vessel function, and to determine its underlying mechanisms.

The researchers exposed human and pig vascular endothelial cells to extracts from Sakurajima Daikon and smaller radishes. Using fluorescence microscopy and other analytical techniques, the research team found the Sakurajima Daikon radish induced more nitric oxide production in these vascular cells than a smaller Japanese radish. They also identified trigonelline, a plant hormone, as the active component in Sakurajima Daikon that appears to promote a cascade of changes in coronary blood vessels resulting improved nitric oxide production.

Rei Kuroda, Kimiko Kazumura, Miki Ushikata, Yuji Minami, Katsuko Kajiya.
Elucidating the Improvement in Vascular Endothelial Function from Sakurajima Daikon and Its Mechanism of Action: A Comparative Study with Raphanus sativus.
J. Agric. Food Chem., doi: 10.1021/acs.jafc.8b01750.

Most Popular Now

AstraZeneca divests rights for Losec to Cheplaphar…

AstraZeneca has agreed to sell the global commercial rights, excluding China, Japan, the US and Mexico, for Losec (omeprazole) and associated brands to Cheplapharm Arznei...

Bayer, Brigham and Women’s Hospital, and Massachus…

Bayer and Partners HealthCare's founding members Brigham and Women's Hospital (BWH) and Massachusetts General Hospital (MGH) today announced the launch of a joint lab to ...

Amgen announces positive results from two Phase 3 …

Amgen (NASDAQ:AMGN) today announced that the results of a prespecified interim analysis of an open-label, randomized, controlled global multicenter Phase 3 trial (2012021...

Cause of antibiotic resistance identified

Scientists have confirmed for the first time that bacteria can change form to avoid being detected by antibiotics in the human body. Studying samples from elderly patient...

Brilinta monotherapy in high-bleeding risk patient…

New data from TWILIGHT, a Phase IV independent trial (funded by AstraZeneca), showed that in patients at high-bleeding risk who underwent PCI and completed 3 months of du...

Novartis and Microsoft announce collaboration to t…

Novartis announced an important step in reimagining medicine by founding the Novartis AI innovation lab and by selecting Microsoft as its strategic AI and data-science pa...

Bayer inks deals with eleven startups under G4A Di…

Bayer announced today that the company has signed collaboration agreements with eleven digital health startups. As part of the program, Bayer will support these startup c...

Pharmacists provide patient value in team-based ca…

With inhaler in hand, Dr. Cheng Yuet went over every detail to make sure the patient understood how the drug would control their COPD symptoms. Dr. Yuet is proving what a...

Ian Read to retire as Executive Chairman of Pfizer…

Following its regularly scheduled meeting, the Board of Directors of Pfizer Inc. (NYSE:PFE) today announced that Executive Chairman of the Board Ian C. Read has chosen to...

AI and big data predict which research will influe…

An artificial intelligence/machine learning model to predict which scientific advances are likely to eventually translate to the clinic has been developed by Ian Hutchins...

Discovery of new source of cancer antigens may exp…

For more than a decade, scientist Stephen Albert Johnston and his team at Arizona State University's Biodesign Institute have pooled their energies into an often scoffed-...

Chinese activists protest the use of traditional t…

In the West, the number of people challenging scientific authority has been growing in past decades. This has, among other things, led to a decline in the support for mas...