New leads on treating dementia and Alzheimer's

A new research study by scientists in Australia and the US provides an explanation for why clinical trials of drugs reducing proteins in the brain that were thought to cause dementia and Alzheimer's have failed. The study has opened the way for potential new treatments with existing drugs. Published online in the journal Human Molecular Genetics, the researchers assembled evidence from a wide range of human studies and animal models of dementia-related diseases to show that inflammation is a major cause, not just a consequence.

They show that many genes linked with dementia regulate our susceptibility and response to inflammatory damage.

"For decades, scientists have thought that dementia and Alzheimer's Disease are caused by protein aggregates forming in the brain. But recent clinical trials of drugs that reduce the aggregates have failed," says project leader Professor Robert Richards, from the University of Adelaide's School of Biological Sciences. He is working in collaboration with the University's Adelaide Medical School and the National Institutes of Health, in the US.

Inflammation has long been known to increase as dementia-related diseases progress, but only now is it identified as the cause. Previously it was thought to act simply to clean up tissue damage caused by the protein aggregates.

"We know that inflammation has different phases - early on it can be protective against a threat by actively degrading it, but if the threat is not removed, then persistent inflammation actually causes cell death," says Professor Richards.

The new work turns previous thinking around. The genetic linkages imply that the inflammation comes first - and the tissue damage second.

"Many genes linked with dementia operate at the level of controlling cellular inflammation. Both internal and external triggers interact with these genes to play a part. Inflammation is the point through which many triggers converge," says Professor Richards.

He likens the brain inflammation to a virus infection. "Inflammation is a very effective defence against foreign agents like viruses. But as we get older and accumulate mutations, our cells can make proteins and DNA products that mimic viruses, and these build up in the system," he says.

"Normally, our cells bar-code their own products to tell them apart from foreign agents. When these bar-codes aren't in place, our cells can't properly distinguish 'self' and 'non-self' trigger molecules. The result is inflammation that escalates and spreads - hence the term autoinflammatory disease."

Certain types of gene mutation cause these systems to fail earlier or more often, and can increase as we age - possibly accounting for age-related increased risk of developing dementia.

The good news is that by reducing some elements of inflammation, it may be possible to reduce dementia symptoms.

"With this new understanding of the disease, we now need to test existing anti-inflammatory drugs for their effectiveness in treating dementia," he says.

Robert I Richards, Sarah A Robertson, Daniel L Kastner.
Neurodegenerative diseases have genetic hallmarks of autoinflammatory disease.
Human Molecular Genetics, ddy139. doi: 10.1093/hmg/ddy139.

Most Popular Now

Chemists characterize the fatal fungus among us

Life-threatening fungal infections affect more than two million people worldwide. Effective antifungal medications are very limited. Until now, one of the major challenge...

FDA approves first cancer drug through new oncolog…

The U.S. Food and Drug Administration today approved Kisqali (ribociclib) in combination with an aromatase inhibitor for the treatment of pre/perimenopausal or postmenopa...

Discovery of kidney cancer driver could lead to ne…

University of North Carolina Lineberger Comprehensive Cancer Center scientists have uncovered a potential therapeutic target for kidney cancers that have a common genetic...

The immune system: T cells are built for speed

Without T cells, we could not survive. They are a key component of our immune system and have highly sensitive receptors on their surface that can detect pathogens. The e...

Pfizer initiates pivotal Phase 3 program for inves…

Pfizer Inc. (NYSE:PFE) and Spark Therapeutics (NASDAQ:ONCE) announced today that Pfizer initiated a Phase 3 open-label, multi-center, lead-in study (NCT03587116) to evalu...

FDA approves first targeted treatment for patients…

The U.S. Food and Drug Administration today approved Tibsovo (ivosidenib) tablets for the treatment of adult patients with relapsed or refractory acute myeloid leukemia (...

Sanofi and REVOLUTION Medicines launch global part…

Sanofi and REVOLUTION Medicines, Inc. today announced an exclusive worldwide partnership to develop and commercialize targeted therapies, based on the biology of the cell...

Novartis renews drug donation of Egaten® (triclabe…

Novartis reaffirms its commitment to the fight against liver fluke (fascioliasis), signing a renewed memorandum of understanding with the World Health Organization (WHO) ...

Women and older people under-represented in drug t…

Trying to determine how best to treat a patient, doctors often look to randomized clinical trials to guide their choice of what drug to prescribe. One of the most common ...

New findings suggest allergic responses may protec…

The components of the immune system that trigger allergic reactions may also help protect the skin against cancer, suggest new findings. The research, led by Imperial Col...

FDA grants Breakthrough Therapy Designation for Ro…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced that the U.S. Food and Drug Administration (FDA) has granted Breakthrough Therapy Designation for Tecentriq® (atezolizumab) i...

Novartis marks a new era for migraine patients wit…

Novartis announced today that the European Commission (EC) approved Aimovig® (erenumab) for the prevention of migraine in adults experiencing four or more migraine days p...