New targeted therapy schedule could keep melanoma at bay

Skin melanoma, a particularly insidious cancer, accounts for the vast majority skin cancer deaths and is one of the most common cancers in people under 30. Treatment for advanced melanoma has seen success with targeted therapies - drugs that interfere with division and growth of cancer cells by targeting key molecules - especially when multiple drugs are used in combination. While the combination of targeted therapies improves patient outcomes, any remaining cancer cells can lead to drug resistance. Recently research published in Cancer Discovery showed that changing the schedules of drug administration can improve outcomes leading to more complete responses in mouse models of the disease.

"We are looking to optimize the combinations of targeted therapies and the scheduling of those therapies so we can improve tumor shrinkage and minimize potential toxicities for a patient," said Andrew Aplin, PhD, Associate Director for Basic Research and the Program Leader for Cancer Cell Biology and Signaling (CCBS) in the NCI-designated Sidney Kimmel Cancer Center at Jefferson Health.

Dr. Aplin and Jessica Teh, PhD, his senior postdoctoral researcher at Jefferson (Philadelphia University + Thomas Jefferson University), examined the effects of a combination of two FDA-approved targeted agents on human melanomas grafted onto mice. While one drug, MEK inhibitor, is usually used in advanced-stage melanoma, the other drug, CDK4/6 inhibitor, palbociclib, is currently FDA-approved for treatment of Estrogen Receptor-positive breast cancer patients. While MEK inhibitors are part of treatment protocols for melanoma, palbociclib is entering clinical trials for use in melanoma populations.

When both drugs were given intermittently, tumor growth increased after a one-week drug holiday, and tumors became resistant to the therapy after about eight weeks. However, if one drug was provided continuously while the other given intermittently, the tumors shrank and remained small, no matter which drug was continuous.

Exploring that result further, the researchers noticed that with continuous MEK inhibition, tumors were consistently smaller, with some shrinking to undetectable levels. Whereas continuous CDK4/6 inhibition showed some toxicity not observed on the other schedules. Thus, a combination of MEK inhibitor given continuously with intermittent CDK4/6 inhibitor was the most effective schedule in mice.

After initially responding to the optimized drug schedule, some tumors showed resistance and began growing back despite the presence of the drugs. However, the researchers uncovered several mechanisms leading to tumor resistance, giving them insight into which drugs could combat the resistant cancer.

"The surprising part was that the mechanisms of resistance all funneled through one signaling pathway, ultimately, but the way that they start is frequently different," said Dr. Aplin. When that common pathway was blocked with a new drug, mTOR inhibitor, in addition to continuing the optimized therapies, resistance was effectively turned off, and the tumors resumed shrinking. Though it still has to be shown effective in humans with the disease, this paper provides a testable method of optimizing currently available drugs for melanoma treatment. Because these drugs have already passed FDA-safety tests, it could be available to patients on the order of a few years, rather than decades.

To that end, in collaboration with the University of Zurich and MD Anderson Cancer Center, the researchers tested melanoma tumor samples from human patients undergoing treatment with the same targeted therapies. The common pathway found in mouse models was also found in human tumors, suggesting that resistance could indeed be blocked in patients with the same drug as in mice.

Dr. Aplin credits support from the Sidney Kimmel Cancer Center as well as external support from the Melanoma Research Alliance with launching this ambitions project. "They supported us at the start of this project and without this grant, we wouldn't have done this work," Aplin says.

"Dr. Aplin's major research advance is part of a larger effort by the Sidney Kimmel Cancer Center to develop new strategies for treating melanoma. Research teams focused on both cutaneous and uveal melanoma are fast-tracking discoveries into the clinical setting, and bringing novel therapeutic options to patients in the Philadelphia region", said Karen Knudsen, Director of the Sidney Kimmel Cancer Center.

Jessica LF Teh, Phil F Cheng, Timothy J Purwin, Neda Nikbakht, Prem Patel, Inna Chervoneva, Adam Ertel, Paolo M Fortina, Ines Kleiber, Kim HooKim, Michael A Davies, Lawrence N Kwong, Mitch P Levesque, Reinhard Dummer, Andrew E Aplin.
In vivo E2F reporting reveals efficacious schedules of MEK1/2-CDK4/6 targeting and mTOR-S6 resistance mechanisms.
Cancer Discovery. doi: 10.1158/2159-8290.CD-17-0699.

Most Popular Now

Cannabis extract helps reset brain function in psy…

Research from King's College London has found that a single dose of the cannabis extract cannabidiol can help reduce brain function abnormalities seen in people with psyc...

For first time in 40 years, cure for acute leukemi…

Acute myeloid leukemia is one of the most aggressive cancers. While other cancers have benefitted from new treatments, there has been no encouraging news for most leukemi...

Consuming milk at breakfast lowers blood glucose t…

A change in breakfast routine may provide benefits for the management of type 2 diabetes, according to a new study published in the Journal of Dairy Science. H. Douglas G...

New cancer treatment uses enzymes to boost immune …

Researchers at The University of Texas at Austin have developed a new approach to treating cancer using enzyme therapy. The enzyme, PEG-KYNase, does not directly kill can...

Bayer accelerates six new startups

Changing the experience of health: that's the focus of the six startups which the Bayer G4A team has included in the Accelerator program this year. The young companies fr...

Novartis receives European Commission approval of …

Novartis today announced that the European Commission (EC) has approved Kymriah® (tisagenlecleucel, formerly CTL019). The approved indications are for the treatment of pe...

Shire completes sale of oncology franchise

Shire plc (LSE: SHP, NASDAQ: SHPG) announces today that it has completed the sale of its Oncology franchise to Servier S.A.S. for $2.4 billion. The franchise includes the...

Bristol-Myers Squibb - Pfizer Alliance ACROPOLIS™ …

The Bristol-Myers Squibb-Pfizer Alliance will present 15 Eliquis® (apixaban) posters at the ESC Congress 2018 held in Munich, Germany, August 25-29, 2018. Nine of the pos...

Antioxidant reduces risk for second heart attack, …

Doctors have long known that in the months after a heart attack or stroke, patients are more likely to have another attack or stroke. Now, a paper in the Journal of the A...

SOLAR-1 trial of Novartis investigational alpha-sp…

Novartis today announced the global Phase III SOLAR-1 trial evaluating the investigational alpha-specific PI3K inhibitor BYL719 (alpelisib) has met the primary endpoint s...

Novartis to divest the Sandoz US dermatology busin…

Novartis today announced it has agreed to sell selected portions of its Sandoz US portfolio, specifically the Sandoz US dermatology business and generic US oral solids po...

New tablet production facility in Ingelheim: Cente…

Boehringer Ingelheim held a groundbreaking ceremony for the construction of a new production facility for innovative drugs. This new Solids Launch facility will focus on ...