First proof a synthesized antibiotic is capable of treating superbugs

A "game changing" new antibiotic which is capable of killing superbugs has been successfully synthesised and used to treat an infection for the first time - and could lead to the first new class of antibiotic drug in 30 years. The breakthrough is another major step forward on the journey to develop a commercially viable drug version based on teixobactin - a natural antibiotic discovered by US scientists in soil samples in 2015 which has been heralded as a "gamechanger" in the battle against antibiotic resistant pathogens such as MRSA and VRE.

Scientists from the University of Lincoln, UK, have now successfully created a simplified, synthesised form of teixobactin which has been used to treat a bacterial infection in mice, demonstrating the first proof that such simplified versions of its real form could be used to treat real bacterial infection as the basis of a new drug.

The team at Lincoln developed a library of synthetic versions of teixobactin by replacing key amino acids at specific points in the antibiotic's structure to make it easier to recreate. After these simplified synthetic versions were shown to be highly potent against superbug-causing bacteria in vitro - or test tube - experiments, researchers from the Singapore Eye Research Institute (SERI) then used one of the synthetic versions to successfully treat a bacterial infection in mice.

As well as clearing the infection, the synthesised teixobactin also minimised the infection's severity, which was not the case for the clinically-used antibiotic, moxifloxacin, used as a control study. The findings are published in the Journal of Medicinal Chemistry.

It has been predicted that by 2050 an additional 10 million people will succumb to drug resistant infections each year. The development of new antibiotics which can be used as a last resort when other drugs are ineffective is therefore a crucial area of study for healthcare researchers around the world.

Dr Ishwar Singh, a specialist in novel drug design and development from the University of Lincoln's School of Pharmacy, said: "Translating our success with these simplified synthetic versions from test tubes to real cases is a quantum jump in the development of new antibiotics, and brings us closer to realising the therapeutic potential of simplified teixobactins.

"When teixobactin was discovered it was groundbreaking in itself as a new antibiotic which kills bacteria without detectable resistance including superbugs such as MRSA, but natural teixobactin was not created for human use.

"A significant amount of work remains in the development of teixobactin as a therapeutic antibiotic for human use - we are probably around six to ten years off a drug that doctors can prescribe to patients -- but this is a real step in the right direction and now opens the door for improving our in vivo analogues."

Dr Lakshminarayanan Rajamani from SERI added: "We need sophisticated armour to combat antibiotic-resistant pathogens. Drugs that target the fundamental mechanism of bacterial survival, and also reduce the host's inflammatory responses are the need of the hour. Our preliminary studies suggest that the modified peptide decreases the bacterial burden as well as disease severity, thus potentially enhancing the therapeutic utility."

The work builds on the success of the Lincoln team's pioneering research to tackle antimicrobial resistance over the past 22 months to turn teixobactin into a viable drug. The team will now develop a bigger library of simplified synthetic versions which can be used is a diverse number of applications, advancing the goal of a clinical drug.

Anish Parmar, Rajamani Lakshminarayanan, Abhishek Iyer, Venkatesh Mayandi, Eunice Tze Leng Goh, Daniel G Lloyd, Madhavi Latha S Chalasani, Navin K Verma, Stephen H Prior, Roger W Beuerman, Annemieke Madder, Edward J Taylor, Ishwar Singh.
Design and Syntheses of Highly Potent Teixobactin Analogues against Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus (MRSA), and Vancomycin-Resistant Enterococci (VRE) in Vitro and in Vivo.
J. Med. Chem., 2018, 61 (5), pp 2009-2017. doi: 10.1021/acs.jmedchem.7b01634.

Most Popular Now

Cannabis extract helps reset brain function in psy…

Research from King's College London has found that a single dose of the cannabis extract cannabidiol can help reduce brain function abnormalities seen in people with psyc...

For first time in 40 years, cure for acute leukemi…

Acute myeloid leukemia is one of the most aggressive cancers. While other cancers have benefitted from new treatments, there has been no encouraging news for most leukemi...

Consuming milk at breakfast lowers blood glucose t…

A change in breakfast routine may provide benefits for the management of type 2 diabetes, according to a new study published in the Journal of Dairy Science. H. Douglas G...

New cancer treatment uses enzymes to boost immune …

Researchers at The University of Texas at Austin have developed a new approach to treating cancer using enzyme therapy. The enzyme, PEG-KYNase, does not directly kill can...

Bayer accelerates six new startups

Changing the experience of health: that's the focus of the six startups which the Bayer G4A team has included in the Accelerator program this year. The young companies fr...

Novartis receives European Commission approval of …

Novartis today announced that the European Commission (EC) has approved Kymriah® (tisagenlecleucel, formerly CTL019). The approved indications are for the treatment of pe...

Shire completes sale of oncology franchise

Shire plc (LSE: SHP, NASDAQ: SHPG) announces today that it has completed the sale of its Oncology franchise to Servier S.A.S. for $2.4 billion. The franchise includes the...

Bristol-Myers Squibb - Pfizer Alliance ACROPOLIS™ …

The Bristol-Myers Squibb-Pfizer Alliance will present 15 Eliquis® (apixaban) posters at the ESC Congress 2018 held in Munich, Germany, August 25-29, 2018. Nine of the pos...

Antioxidant reduces risk for second heart attack, …

Doctors have long known that in the months after a heart attack or stroke, patients are more likely to have another attack or stroke. Now, a paper in the Journal of the A...

SOLAR-1 trial of Novartis investigational alpha-sp…

Novartis today announced the global Phase III SOLAR-1 trial evaluating the investigational alpha-specific PI3K inhibitor BYL719 (alpelisib) has met the primary endpoint s...

Novartis to divest the Sandoz US dermatology busin…

Novartis today announced it has agreed to sell selected portions of its Sandoz US portfolio, specifically the Sandoz US dermatology business and generic US oral solids po...

New tablet production facility in Ingelheim: Cente…

Boehringer Ingelheim held a groundbreaking ceremony for the construction of a new production facility for innovative drugs. This new Solids Launch facility will focus on ...