Calcium may play a role in the development of Parkinson's disease

Researchers have found that excess levels of calcium in brain cells may lead to the formation of toxic clusters that are the hallmark of Parkinson's disease. The international team, led by the University of Cambridge, found that calcium can mediate the interaction between small membranous structures inside nerve endings, which are important for neuronal signalling in the brain, and alpha-synuclein, the protein associated with Parkinson's disease. Excess levels of either calcium or alpha-synuclein may be what starts the chain reaction that leads to the death of brain cells.

The findings, reported in the journal Nature Communications, represent another step towards understanding how and why people develop Parkinson's. According to the charity Parkinson's UK, one in every 350 adults in the UK - an estimated 145,000 in all - currently has the condition, but as yet it remains incurable.

Parkinson's disease is one of a number of neurodegenerative diseases caused when naturally occurring proteins fold into the wrong shape and stick together with other proteins, eventually forming thin filament-like structures called amyloid fibrils. These amyloid deposits of aggregated alpha-synuclein, also known as Lewy bodies, are the sign of Parkinson's disease.

Curiously, it hasn't been clear until now what alpha-synuclein actually does in the cell: why it's there and what it's meant to do. It is implicated in various processes, such as the smooth flow of chemical signals in the brain and the movement of molecules in and out of nerve endings, but exactly how it behaves is unclear.

"Alpha-synuclein is a very small protein with very little structure, and it needs to interact with other proteins or structures in order to become functional, which has made it difficult to study," said senior author Dr Gabriele Kaminski Schierle from Cambridge's Department of Chemical Engineering and Biotechnology.

Thanks to super-resolution microscopy techniques, it is now possible to look inside cells to observe the behaviour of alpha-synuclein. To do so, Kaminski Schierle and her colleagues isolated synaptic vesicles, part of the nerve cells that store the neurotransmitters which send signals from one nerve cell to another.

In neurons, calcium plays a role in the release of neurotransmitters. The researchers observed that when calcium levels in the nerve cell increase, such as upon neuronal signalling, the alpha-synuclein binds to synaptic vesicles at multiple points causing the vesicles to come together. This may indicate that the normal role of alpha-synuclein is to help the chemical transmission of information across nerve cells.

"This is the first time we've seen that calcium influences the way alpha-synuclein interacts with synaptic vesicles," said Dr Janin Lautenschl?ger, the paper's first author. "We think that alpha-synuclein is almost like a calcium sensor. In the presence of calcium, it changes its structure and how it interacts with its environment, which is likely very important for its normal function."

"There is a fine balance of calcium and alpha-synuclein in the cell, and when there is too much of one or the other, the balance is tipped and aggregation begins, leading to Parkinson's disease," said co-first author Dr Amberley Stephens.

The imbalance can be caused by a genetic doubling of the amount of alpha-synuclein (gene duplication), by an age-related slowing of the breakdown of excess protein, by an increased level of calcium in neurons that are sensitive to Parkinson's, or an associated lack of calcium buffering capacity in these neurons.

Understanding the role of alpha-synuclein in physiological or pathological processes may aid in the development of new treatments for Parkinson's disease. One possibility is that drug candidates developed to block calcium, for use in heart disease for instance, might also have potential against Parkinson's disease.

Janin Lautenschläger, Amberley D Stephens, Giuliana Fusco, Florian Ströhl, Nathan Curry, Maria Zacharopoulou, Claire H Michel, Romain Laine, Nadezhda Nespovitaya, Marcus Fantham, Dorothea Pinotsi, Wagner Zago, Paul Fraser, Anurag Tandon, Peter St George-Hyslop, Eric Rees, Jonathan J Phillips, Alfonso De Simone, Clemens F Kaminski, Gabriele S Kaminski Schierle.
C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction.
Nature Communications, volume 9, Article number: 712 (2018). doi: 10.1038/s41467-018-03111-4.

Most Popular Now

Pfizer begins a Phase 1/2 study to evaluate respir…

Pfizer Inc. (NYSE:PFE) today announced that it has started a Phase 1/2 trial of its respiratory syncytial virus (RSV) vaccine candidate in healthy adult volunteers. RSV i...

Eczema drug effective against severe asthma

Two new studies of patients with difficult-to-control asthma show that the eczema drug dupilumab alleviates asthma symptoms and improves patients' ability to breathe bett...

Most popular vitamin and mineral supplements provi…

The most commonly consumed vitamin and mineral supplements provide no consistent health benefit or harm, suggests a new study led by researchers at St. Michael's Hospital...

AstraZeneca heads to 2018 ASCO Annual Meeting with…

AstraZeneca and MedImmune, its global biologics research and development arm, head to the 2018 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, US...

Tiny particles could help fight brain cancer

Glioblastoma multiforme, a type of brain tumor, is one of the most difficult-to-treat cancers. Only a handful of drugs are approved to treat glioblastoma, and the median ...

Novartis data at ASCO and EHA reinforce company's …

Novartis will present data from across its oncology portfolio at the upcoming 54th Annual Meeting of the American Society of Clinical Oncology (ASCO) to be held June 1-5 ...

Spiolto® Respimat® enables greater physical activi…

Boehringer Ingelheim announced data which add to the growing body of evidence that show Spiolto® (tiotropium/olodaterol) Respimat® enables greater physical activity in pa...

New approach to immunotherapy leads to complete re…

A novel approach to immunotherapy developed by researchers at the National Cancer Institute (NCI) has led to the complete regression of breast cancer in a patient who was...

Amgen Foundation and Harvard team up to offer free…

The Amgen Foundation and Harvard University today announced plans to launch a free online science education platform uniquely designed to level the playing field for aspi...

The Pfizer Foundation announces $5 million in gran…

The Pfizer Foundation announced a new $5 million grant commitment to initiatives in low- and middle-income countries that provide family planning access and education for...

Study demonstrates new treatment for severe asthma

Researchers from McMaster University and the Firestone Institute for Respiratory Health at St. Joseph's Healthcare Hamilton, together with colleagues at other partnering ...

Study finds antioxidant-enriched vitamin reduces r…

Researchers at Children's Hospital Colorado (Children's Colorado) and the University of Colorado School of Medicine have found that taking a specially formulated antioxid...