Light-activated cancer drugs without toxic side effects: fresh insight

Future cancer drugs that are activated by light and don’t cause the toxic side-effects of current chemotherapy treatments are closer to becoming a reality, thanks to new research made possible by the Monash Warwick Alliance, an intercontinental collaboration between the University of Warwick (UK) and Monash University (Australia).

Led by Robbin Vernooij, a joint PhD student from the Monash Warwick Alliance, fresh insight has been gained into how a pioneering platinum-based chemotherapy drug candidate - trans,trans,trans-[Pt(N3)2(OH)2(py)2] - functions when activated by light.

The treatment - originally developed by Professor Peter Sadler's research group in the University of Warwick's Department of Chemistry - is an inorganic-metal compound with an unusual mechanism, which kills cancer cells in specific targeted areas, in an effort to minimize toxic side-effects on healthy tissue.

Completely inactive and non-toxic in the dark, the treatment can be inserted into cancerous areas, its functions triggered only when directed light hits it - causing the compound to degrade into active platinum and releasing ligand molecules to attack cancer cells.

Using an old spectroscopic technique - infrared spectroscopy - the researchers observed what happens to the structure of the compound by following the metal as well as molecules released from the compound.

The researchers shone infrared light on the inorganic-metal compound in the laboratory, and measured the vibrations of its molecules as it was activated.

From this, they discovered the chemical and physical properties of the compound: some of the organic ligands, which are attached to the metal atoms of the compound, become detached and are replaced with water whilst other ligands remain stable around the metal.

This fresh insight into the mechanics of the treatment offers new hope that photoactive chemotherapy drug candidates, such as trans,trans,trans-[Pt(N3)2(OH)2(py)2], will progress from the laboratory to future clinical trials.

Robbin Vernooij, lead author and joint researcher from the Monash Warwick Alliance, commented: "The current short comings of most chemotherapeutic agents are unfortunately undeniable, and therefore there is ongoing effort to develop new therapies and improve our understanding of how these agents work in effort to develop not only more effective, but also more selective, therapies to reduce the burden on patients.

"This is an exciting step forward, demonstrating the power of vibrational spectroscopic techniques combined with modern computing to provide new insights on how this particular photoactive chemotherapeutic agent works, which brings us one step closer to our goal of making more selective and effective cancer treatments."

Peter Sadler, Professor of Chemistry at the University of Warwick, commented: "About half of all chemotherapy treatments for cancer current use a platinum compound, but if we can introduce new platinum compounds that avoid side-effects and are active against resistant cancers, that would be a major advance.

"Photoactivated platinum compounds offer such possibilities. They do not kill cells until irradiated with light, and the light can be directed to the tumour so avoiding unwanted damage to normal tissue.

"It is important that we understand how these new light-activated platinum compounds kill cancer cells. We believe they attack cancer cells in totally new ways and can combat resistance. Understanding at the molecular levels requires use of all the advanced technology that we can muster. In this case, advances have been made possible by a highly talented research student working with state-of-the-art equipment on opposite sides of the globe.

"We hope that new approaches involving the combination of light and chemotherapy can play a role in combatting the current short comings of cancer therapy and help to save lives."

The majority of cancer patients who undergo chemotherapy treatment currently receive a platinum-based compound, such as cisplatin. These therapies were developed over half a century ago, and cause toxic side-effects in patients, attacking healthy cells as well as cancerous ones.

There is also a growing resistance to more traditional cancer therapies, so new treatments are desperately required.

The research was carried out between six research groups at both the University of Warwick and Monash University, and was made possible through the internationally-renowned shared expertise and resources across the Monash Warwick Alliance.

Vernooij RR, Joshi T, Horbury MD, Graham B, Izgorodina EI, Stavros VG, Sadler PJ, Spiccia L, Wood BR.
Spectroscopic Studies on Photoinduced Reactions of the Anticancer Prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2].
Chem. Eur. J. doi: 10.1002/chem.201705349.

Most Popular Now

FDA grants priority review to Roche's cancer immun…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced that the US Food and Drug Administration (FDA) has accepted the company's supplemental Biologics License Application (sBLA) a...

Kymriah® (tisagenlecleucel), first-in-class CAR-T …

Novartis today announced the US Food and Drug Administration (FDA) has approved Kymriah® (tisagenlecleucel) suspension for intravenous infusion for its second indication ...

Daily aspirin linked to higher risk in men

Men who take once-daily aspirin have nearly double the risk of melanoma compared to men who are not exposed to daily aspirin, reports a new Northwestern Medicine study. W...

New leads on treating dementia and Alzheimer's

A new research study by scientists in Australia and the US provides an explanation for why clinical trials of drugs reducing proteins in the brain that were thought to ca...

Boehringer Ingelheim R&D pushes to transcend d…

Family-owned pharmaceutical company Boehringer Ingelheim has presented its latest pipeline updates at a Research & Development press conference entitled 'Transcending Dis...

Roche reports a strong start in 2018

Roche (SIX: RO, ROG; OTCQX: RHHBY) has announced that in the first three months of 2018, Group sales rose 6% to CHF 13.6 billion. Sales in the Pharmaceuticals Division in...

Novartis launches FocalView app, providing opportu…

Novartis announced the launch of its FocalView app, an ophthalmic digital research platform created with ResearchKit. FocalView aims to allow researchers to track disease...

To treat pain, you need to treat the patient

People in chronic pain are some of the most difficult patients to treat. They have complex circumstances that medicine can't always remedy. Pain can be amplified, by depr...

A potential new weapon in the addiction battle: FD…

Cocaine and other drugs of abuse hijack the natural reward circuits in the brain. In part, that's why it's so hard to quit using these substances. Moreover, relapse rates...

Novo Nordisk participates in new research project …

Within the newly started European research project Hypo-RESOLVE, 23 leading international players from academia, industry and civil society have joined forces to find bet...

Chemical octopus catches sneaky cancer clues, trac…

Cancer drops sparse chemical hints of its presence early on, but unfortunately, many of them are in a class of biochemicals that could not be detected thoroughly, until n...

Alcon Cares Project 100 commits to reducing catara…

Alcon, the global leader in eye care and a division of Novartis, has announced Alcon Cares Project 100, which aims to reduce cataract blindness by providing equipment to ...