AI 'scientist' finds that toothpaste ingredient may help fight drug-resistant malaria

An ingredient commonly found in toothpaste could be employed as an anti-malarial drug against strains of malaria parasite that have grown resistant to one of the currently-used drugs. This discovery, led by researchers at the University of Cambridge, was aided by Eve, an artificially-intelligent 'robot scientist'.

When a mosquito infected with malaria parasites bites someone, it transfers the parasites into their bloodstream via its saliva. These parasites work their way into the liver, where they mature and reproduce. After a few days, the parasites leave the liver and hijack red blood cells, where they continue to multiply, spreading around the body and causing symptoms, including potentially life-threatening complications.

Malaria kills over half a million people each year, predominantly in Africa and south-east Asia. While a number of medicines are used to treat the disease, malaria parasites are growing increasingly resistant to these drugs, raising the spectre of untreatable malaria in the future.

Now, in a study published today in the journal Scientific Reports, a team of researchers employed the Robot Scientist 'Eve' in a high-throughput screen and discovered that triclosan, an ingredient found in many toothpastes, may help the fight against drug-resistance.

When used in toothpaste, triclosan prevents the build-up of plaque bacteria by inhibiting the action of an enzyme known as enoyl reductase (ENR), which is involved in the production of fatty acids.

Scientists have known for some time that triclosan also inhibits the growth in culture of the malaria parasite Plasmodium during the blood-stage, and assumed that this was because it was targeting ENR, which is found in the liver. However, subsequent work showed that improving triclosan's ability to target ENR had no effect on parasite growth in the blood.

Working with 'Eve', the research team discovered that in fact, triclosan affects parasite growth by specifically inhibiting an entirely different enzyme of the malaria parasite, called DHFR. DHFR is the target of a well-established antimalarial drug, pyrimethamine; however, resistance to the drug among malaria parasites is common, particularly in Africa. The Cambridge team showed that triclosan was able to target and act on this enzyme even in pyrimethamine-resistant parasites.

"Drug-resistant malaria is becoming an increasingly significant threat in Africa and south-east Asia, and our medicine chest of effective treatments is slowly depleting," says Professor Steve Oliver from the Cambridge Systems Biology Centre and the Department of Biochemistry at the University of Cambridge. "The search for new medicines is becoming increasingly urgent."

Because triclosan inhibits both ENR and DHFR, the researchers say it may be possible to target the parasite at both the liver stage and the later blood stage.

Lead author Dr Elizabeth Bilsland, now an assistant professor at the University of Campinas, Brazil, adds: "The discovery by our robot 'colleague' Eve that triclosan is effective against malaria targets offers hope that we may be able to use it to develop a new drug. We know it is a safe compound, and its ability to target two points in the malaria parasite's lifecycle means the parasite will find it difficult to evolve resistance."

Robot scientist Eve was developed by a team of scientists at the Universities of Manchester, Aberystwyth, and Cambridge to automate - and hence speed up - the drug discovery process by automatically developing and testing hypotheses to explain observations, run experiments using laboratory robotics, interpret the results to amend their hypotheses, and then repeat the cycle, automating high-throughput hypothesis-led research.

Professor Ross King from the Manchester Institute of Biotechnology at the University of Manchester, who led the development of Eve, says: "Artificial intelligence and machine learning enables us to create automated scientists that do not just take a 'brute force' approach, but rather take an intelligent approach to science. This could greatly speed up the drug discovery progress and potentially reap huge rewards."

Elizabeth Bilsland, Liisa van Vliet, Kevin Williams, Jack Feltham, Marta P. Carrasco, Wesley L. Fotoran, Eliana F. G. Cubillos, Gerhard Wunderlich, Morten Grøtli, Florian Hollfelder, Victoria Jackson, Ross D. King, Stephen G. Oliver.
Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan.
Scientific Reports 8, Article number: 1038 (2018). doi: 10.1038/s41598-018-19549-x.

Most Popular Now

Imfinzi is the first immunotherapy to demonstrate …

AstraZeneca and MedImmune, its global biologics research and development arm, have presented data on overall survival (OS) in the Phase III PACIFIC trial of Imfinzi durin...

Sandoz Healthcare Access Challenge #SandozHACk ret…

Sandoz, the Novartis generics and biosimilars division, today announces the launch of the second Sandoz Healthcare Access Challenge (HACk). The #SandozHACk is a global co...

Global survey reveals that physicians need more in…

Results from a new global survey revealed that more than one-third (36%) of the 310 physicians surveyed do not think they have sufficient information required to make inf...

In clinical trials, new antibody therapy controls …

Thanks to improvements in antiretroviral therapy, HIV is now a manageable condition. Yet even the best drugs do not entirely eliminate the virus, which latently lingers i...

Pfizer to award more than $3 million in grants to …

Pfizer Inc. today announced the recipients of the Advancing Science through Pfizer Investigator Research Exchange (ASPIRE) Breast Cancer Research Awards. Four grants tota...

Novartis licenses three novel anti-infective progr…

Novartis announced today that it has entered into a licensing and equity agreement with Boston Pharmaceuticals for the development of three novel anti-infective drug cand...

The Nobel Prize in Physiology or Medicine 2018 was…

Cancer kills millions of people every year and is one of humanity's greatest health challenges. By stimulating the inherent ability of our immune system to attack tumor c...

FDA approves first treatment for advanced form of …

The U.S. Food and Drug Administration today approved Libtayo (cemiplimab-rwlc) injection for intravenous use for the treatment of patients with metastatic cutaneous squam...

FDA approves expanded use of Gardasil 9 to include…

The U.S. Food and Drug Administration approved a supplemental application for Gardasil 9 (Human Papillomavirus (HPV) 9-valent Vaccine, Recombinant) expanding the approved...

DNA islands effective as 'anti-bacterial drones'

Genomic "islands" that evolved from viruses can be converted into "drones" that disable Staphylococcus aureus, bacteria that are often resistant to antibiotics and pose a...

FDA awards 12 grants to fund new clinical trials t…

The U.S. Food and Drug Administration today announced that it has awarded 12 new clinical trial research grants totaling more than $18 million over the next four years to...

Pfizer announces Executive Leadership Team

Pfizer Inc. (NYSE:PFE) today announced its executive team that will report to Albert Bourla, incoming Chief Executive Officer, coincident with the commencement of his new...