New brain cancer drug targets revealed

Researchers from Case Western Reserve University School of Medicine and The Cleveland Clinic designed a way to screen brain tumor cells and identify potential drug targets missed by other methods. The team successfully used their technique to find a glioblastoma cancer gene that, when blocked, extends mouse survival rates. In a study published in Nature, the team implanted patient-derived glioblastoma cells in mice and measured gene activity in the growing brain tumors. They compared the gene activity to that of cancer cells grown in vitro - inside laboratory dishes. The researchers found 55 genes required for the cells to grow inside working brains - in vivo - but not inside laboratory dishes.

"The genes needed for cancer cells to survive in a tumor were not necessarily the same ones needed to survive in a Petri dish," said Tyler Miller, PhD, first author on the study and medical student in the CWRU Medical Science Training Program and Cleveland Clinic Lerner Research Institute. "This means the field may have been missing a whole host of potential therapeutic targets that may actually improve patient outcomes and prolong survival." Glioblastoma is associated with a 2-3 year survival rate and few meaningful treatment options, according to the American Brain Tumor Association.

The high-throughput screening technique revealed new vulnerabilities in glioblastoma tumors that could be targeted by drug developers. Of the 55 genes identified, 12 were all related to a single process--how cancer cells respond to stress. The researchers blocked one of the stress genes in the implanted tumors and the mice lived longer. But blocking the gene inside laboratory dishes did not alter glioblastoma cell growth or survival.

Said Miller, "Our study found that in a natural environment, tumor cells are more susceptible to inhibition of their stress response mechanisms. Current chemotherapies all target proliferating, or dividing cells. That doesn't always work for glioblastoma. Our findings suggest that targeting the stress response may be better at slowing tumor growth than targeting cell proliferation, which opens up a new avenue for therapeutic development."

The two senior authors on the study are Miller's advisors, Jeremy Rich, MD of the Cleveland Clinic Lerner Research Institute, and Paul Tesar, PhD, Dr. Donald and Ruth Weber Goodman Professor of Innovative Therapeutics and Associate Professor of Genetics and Genome Sciences at Case Western Reserve University School of Medicine. Tesar is also a member of the Case Comprehensive Cancer Center.

According to the researchers, their approach could be used to screen other types of cancers for potential therapeutic targets. Said Miller, "Prior attempts at discovering therapeutic targets have generally been done in cell culture, that is, patient cells on plastic dishes in artificial media to help them grow. Systems like ours that more closely mimic the natural tumor environment are more likely to translate into better therapies for patients."

This work was supported by Velosano (J.N.R.); New York Stem Cell Foundation-Robertson Investigator Award (P.J.T.); CIHR Banting Fellowship (S.C.M.); and National Institutes of Health grants CA183510 (T.E.M.); GM007250 (T.E.M., A.R.M., L.J.Y.K., J.J.M.); CA189647 (C.G.H.); CA154130, CA169117, CA197718, CA171652, NS087913, and NS089272 (J.N.R.).

Miller TE, Liau BB, Wallace LC, Morton AR, Xie Q, Dixit D, Factor DC, Kim LJY, Morrow JJ, Wu Q, Mack SC, Hubert CG, Gillespie SM, Flavahan WA, Hoffmann T, Thummalapalli R, Hemann MT, Paddison PJ, Horbinski CM, Zuber J, Scacheri PC, Bernstein BE, Tesar PJ, Rich JN.
Transcription elongation factors represent in vivo cancer dependencies in glioblastoma.
Nature. 2017 Jul 5. doi: 10.1038/nature23000.

Most Popular Now

Fasenra (benralizumab) receives US FDA approval fo…

AstraZeneca and its global biologics research and development arm, MedImmune, announced that the US Food and Drug Administration (FDA) has approved Fasenra (benralizumab)...

A great place to do great things: Developing game-…

Science has spoken: Abbott (NYSE: ABT) is, again, among the best science-based companies to work for in the world. For the 14th year, the journal Science today recognized...

Alzheimer's disease might be a 'whole body' proble…

Alzheimer's disease, the leading cause of dementia, has long been assumed to originate in the brain. But research from the University of British Columbia and Chinese scie...

Cancer cells destroyed with dinosaur extinction me…

Cancer cells can be targeted and destroyed with the metal from the asteroid that caused the extinction of the dinosaurs, according to new research by an international col...

Novartis confirms leadership in multiple sclerosis…

Novartis today announced it will present 54 scientific abstracts from across its multiple sclerosis (MS) research portfolio at the 7th Joint European and Americas Committ...

Amgen and Novartis announce expanded collaboration…

Amgen (NASDAQ:AMGN) and Novartis announced an expanded collaboration with the Banner Alzheimer's Institute (BAI) to initiate a new trial - the Alzheimer's Prevention Init...

Transplanted hematopoietic stem cells reverse dama…

Researchers at University of California San Diego School of Medicine report that a single infusion of wildtype hematopoietic stem and progenitor cells (HSPCs) into a mous...

Novartis announces the planned acquisition of Adva…

Novartis announced today, that it has entered a memorandum of understanding with Advanced Accelerator Applications (AAA) under which Novartis intends to commence a tender...

'Precision Medicine' may not always be so precise

Precision Medicine in oncology, where genetic testing is used to determine the best drugs to treat cancer patients, is not always so precise when applied to some of the w...

China's out of control 'silent killer' affects one…

More than one-third of adults in China have high blood pressure - often dubbed the "silent killer" for its lack of symptoms - but only about one in 20 have the condition ...

New tissue-engineered blood vessel replacements on…

Researchers at the University of Minnesota have created a new lab-grown blood vessel replacement that is composed completely of biological materials, but surprisingly doe...

New US study reveals key reasons why millions of p…

Few of the more than 90 million Americans(1) with obesity are seeking and receiving long-term obesity care, according to new data from the Awareness, Care and Treatment I...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]